×

Blossoming stories. (English) Zbl 1071.65016

The author reviews the main properties of blossoms along with their important repercussions in all aspects of geometric design. More precisely, he points out the implicit presence of blossoms in the work of Laguerre. This is proved in three different ways, involving various aspects of polynomials blossoms: the first proof is based on their algebraic nature, while the second only uses their geometric properties. Finally, combining both aspects proves to the particularly efficient in the third proof.
Next, the author deals with possible ways of extending blossoms beyond the polynomial framework. More precisely, an algebraic approach, modelled on the polynomial case, is developed. De Boor-type algorithms and B-spline-like functions emerge from this approach, along with spline spaces defined in a purely algebraic way.
Afterwards, the geometrical extension directly inspired by the geometric interpretation of polynomial blossoms, is developed. The author recalls how, through subblossoms, this enables to use all the results developed in the algebraical approach presented.
Finally, he compares the two approaches and gives a survey on how to practically ensure their validity; this leads to the extended Chebyshev or quasi-Chebyshev spaces. Such spaces can be characterized either by the existence of blossoms or existence of B-spline bases.

MSC:

65D17 Computer-aided design (modeling of curves and surfaces)
Full Text: DOI

References:

[1] P.J. Barry, de Boor?Fix dual functionals and algorithms for Tchebycheffian B-splines curves, Construct. Approx. 12 (1996) 385-408. · Zbl 0854.41010 · doi:10.1007/BF02433050
[2] J.-M. Carnicer and J.-M. Peña, Total positivity and optimal bases, in: Total Positivity and its Applications, eds. M. Gasca and C.A. Micchelli (Kluwer Academic, Dordrecht, 1996) pp. 133-155. · Zbl 0892.15002
[3] P. Costantini, Curve and surface construction using variable degree polynomial splines, Computer Aided Geom. Design 17 (2000) 419-446. · Zbl 0938.68128 · doi:10.1016/S0167-8396(00)00010-8
[4] P. de Faget de Casteljau, Courbes et surfaces à pôles (Enveloppe 40040), Institut National de la Propriété Industrielle, Paris (1959). · Zbl 0835.65018
[5] P. de Faget de Casteljau, Formes à Pôles (Hermes, 1985). · Zbl 0655.41001
[6] N. Dyn and A. Ron, Recurrence relations for Tchebycheffian B-splines, J. Anal. Math. 51 (1988) 118-138. · Zbl 0675.41021 · doi:10.1007/BF02791121
[7] N. Dyn and A. Ron, Cardinal translation invariant Tchebycheffian B-splines, Approx. Theory Appl. 6 (1990) 1-12. · Zbl 0709.41008
[8] H. Gonska and A. Lupa?, On an algorithm for Bernstein polynomials, in: Curve and Surface Design, Saint-Malo (2002), eds. T. Lyche, M.-L. Mazure and L.L. Schumaker (Nahsboro Press, Brentwood, TN, 2003) pp. 197-203.
[9] T.N.T. Goodman Total positivity and the shape of curves, in: Total Positivity and its Applications, eds. M. Gasca and C.A. Micchelli (Kluwer Academic, Dordrecht, 1996) pp. 133-155.
[10] T.N.T. Goodman and M.-L. Mazure, Blossoming beyond extended Chebyshev spaces, J. Approx. Theory 109 (2001) 48-81. · Zbl 0996.41005 · doi:10.1006/jath.2000.3529
[11] S. Karlin, Total Positivity (Stanford Univ. Press, Stanford, 1968).
[12] S. Karlin and W.J. Studden, Tchebycheff Systems (Wiley Interscience, New York, 1966). · Zbl 0153.38902
[13] S. Karlin and Z. Ziegler, Chebyshevian spline functions, SIAM J. Numer. Anal. 3 (1966) 514-543. · Zbl 0171.31002 · doi:10.1137/0703044
[14] P.E. Koch and T. Lyche, Construction of exponential tension B-splines of arbitrary order, in: Curves and Surfaces, eds. P.-J. Laurent, A. Le Méhauté and L.L. Schumaker (Academic Press, Boston, 1991) pp. 255-258. · Zbl 0736.41013
[15] E. Laguerre, Sur le rôle des émanants dans la théorie des équations numériques, Comptes Rendus des Séances de l?Académie des Sciences LXXVIII (1874); see also Oeuvres de Laguerre, Tome 1 (Chelsea, New York, 1972) pp. 48-50.
[16] T. Lyche, A recurrence relation for Chebyshevian B-splines, Construct. Approx. 1 (1985) 155-173. · Zbl 0583.41011 · doi:10.1007/BF01890028
[17] T. Lyche, Trigonometric splines; a survey with new results, in: Shape Preserving Representations in Computer-Aided Geometric Design, ed. J.-M. Peña (Nova Science, 1999) pp. 201-227.
[18] T. Lyche and R. Winther, A stable recurrence relation for trigonometric B-splines, J. Approx. Theory 25 (1979) 266-279. · Zbl 0414.41005 · doi:10.1016/0021-9045(79)90017-0
[19] M. Marden, The Geometry of the Zeros of a Polynomial in a Complex Variable (Amer. Math. Soc., Providence, RI, 1949). · Zbl 0038.15303
[20] M.-L. Mazure, Blossoming of Chebyshev splines, in: Mathematical Methods for Curves and Surfaces, eds. T. Lyche and L.L. Schumaker (Vanderbilt Univ. Press, Nashville, TN, 1995) pp. 355-364. · Zbl 0835.65033
[21] M.-L. Mazure, Blossoming: A geometrical approach, Construct. Approx. 15 (1999) 33-68. · Zbl 0924.65010 · doi:10.1007/s003659900096
[22] M.-L. Mazure, Chebyshev?Bernstein bases, Computer Aided Geom. Design 16 (1999) 649-669. · Zbl 0997.65022 · doi:10.1016/S0167-8396(99)00029-1
[23] M.-L. Mazure, Blossoming and CAGD algorithms, in: Shape Preserving Representations in Computer-Aided Geometric Design, ed. J.-M. Peña (Nova Science, 1999) pp. 99-117.
[24] M.-L. Mazure, Chebyhev spaces with polynomial blossoms, Adv. Comput. Math. 10 (1999) 219-238. · Zbl 0933.65016 · doi:10.1023/A:1018995019439
[25] M.-L. Mazure, Four properties to characterize Chebyshev blossoms, Construct. Approx. 17 (2001) 319-333. · Zbl 0987.65017 · doi:10.1007/s003650010029
[26] M.-L. Mazure, Quasi-Chebyshev splines with connexion matrices. Application to variable degree polynomial splines, Computer Aided Geom. Design 18 (2001) 287-298. · Zbl 0978.41006 · doi:10.1016/S0167-8396(01)00031-0
[27] M.-L. Mazure, B-spline bases and osculating flats: One result of H.-P. Seidel revisited, Math. Modelling Numer. Anal. 36 (2002) 1177-1186. · Zbl 1027.65020 · doi:10.1051/m2an:2003010
[28] M.-L. Mazure, Blossoms and optimal bases, Adv. Comput. Math. 20 (2004) 177-203. · Zbl 1042.65016 · doi:10.1023/A:1025855123163
[29] M.-L. Mazure, On the equivalence between existence of B-spline bases and existence of blossoms, Construct. Approx. 20 (2004) 603-624. · Zbl 1063.65017 · doi:10.1007/s00365-003-0547-0
[30] M.-L. Mazure and P.J. Laurent, Affine and non-affine blossoms, in: Computational Geometry, eds. A. Conte, V. Demichelis, F. Fontanella and I. Galligani (World Scientific, Singapore, 1993) pp. 201-230.
[31] M.-L. Mazure and P.J. Laurent, Marsden identities, blossoming and de Boor?Fix formula, in: Advanced Topics in Multivariate Approximation (World Scientific, Singapore, 1996) pp. 227-242. · Zbl 1273.41029
[32] M.-L. Mazure and P.J. Laurent, Piecewise smooth spaces in duality: Application to blossoming, J. Approx. Theory 98 (1999) 316-353. · Zbl 0952.41010 · doi:10.1006/jath.1998.3306
[33] M.-L. Mazure and P.-J. Laurent, Polynomial Chebyshev splines, Computer Aided Geom. Design 16 (1999) 317-343. · Zbl 0916.68152 · doi:10.1016/S0167-8396(99)00005-9
[34] M.-L. Mazure and H. Pottmann, Tchebycheff curves, in: Total Positivity and its Applications, eds. M. Gasca and C.A. Micchelli (Kluwer Academic, Dordrecht, 1996) pp. 187-218. · Zbl 0902.41018
[35] C.A. Micchelli, Cardinal ?-splines, in: Studies in Spline Functions and Approximation Theory (Academic Press, New York, 1976) pp. 203-250.
[36] J.-M. Peña, Shape preserving representations for trigonometric polynomial curves, Computer Aided Geom. Design 14 (1997) 5-11. · Zbl 0900.68417 · doi:10.1016/S0167-8396(96)00017-9
[37] G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, Vol. II (Berlin, 1925).
[38] T. Popoviciu, Despre cea mai bun \(\backslash\)v{a} aproxima?ie a func?iilor continue prin polinoame, Institutul de Arte Grafice Ardealul, Cluj (1937).
[39] H. Pottmann, The geometry of Tchebycheffian splines, Computer Aided Geom. Design 10 (1993) 181-210. · Zbl 0777.41016 · doi:10.1016/0167-8396(93)90036-3
[40] H. Pottmann, A geometric approach to variation diminishing free-form curve schemes, in: Shape Preserving Representations in Computer-Aided Geometric Design, ed. J.-M. Peña (Nova Science, 1999) pp. 119-131.
[41] H. Pottmann and M.G. Wagner, Helix splines as an example of affine Tchebycheffian splines, Adv. Comput. Math. 2 (1994) 123-142. · Zbl 0832.65008 · doi:10.1007/BF02519039
[42] L. Ramshaw, Blossoming: A connect-the-dots approach to splines, Research Report 19, Compaq Systems Research Center, Palo Alto, CA (June 1987).
[43] L. Ramshaw, Blossoms are polar forms, Computer Aided Geom. Design 6 (1989) 323-358. · Zbl 0705.65008 · doi:10.1016/0167-8396(89)90032-0
[44] I.J. Schoenberg, On trigonometric spline interpolation, J. Math. Mech. 13 (1964) 795-826. · Zbl 0147.32104
[45] L.L. Schumaker, Spline Functions (Wiley Interscience, New York, 1981). · Zbl 0449.41004
[46] D. Schweikert, An interpolation curve using a spline in tension, J. Math. Phys. 45 (1966) 312-317. · Zbl 0146.14102
[47] H.-P. Seidel, New algorithms and techniques for computing with geometrically continuous spline curves of arbitrary degree, Math. Modelling Numer. Anal. 26 (1992) 149-176. · Zbl 0752.65008
[48] H.-P. Seidel, Polar forms for geometrically continuous spline curves of arbitrary degree, ACM Trans. Graphics 12 (1993) 1-34. · Zbl 0770.68116 · doi:10.1145/169728.169726
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.