Skip to main content
Log in

Helix splines as an example of affine Tchebycheffian splines

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The present paper summarizes the theory of affine Tchebycheffian splines and presents an interesting affine Tchebycheffian free-form scheme, the “helix scheme”. The curve scheme provides exact representations of straight lines, circles and helix curves in an arc length parameterization. The corresponding tensor product surfaces contain helicoidal surfaces, surfaces of revolution and patches on all types of quadrics. We also show an application to the construction of planarC 2 motions interpolating a given set of positions. Because the spline curve segments are calculated using a subdivision algorithm, many algorithms, which are of fundamental importance in the B-spline technique, can be applied to helix splines as well. This paper should demonstrate how to create an affine free-form scheme fitting to certain special applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Blaschke,Vorlesungen über Differentialgeometrie II: Affine Differentialgeometrie (Springer, Berlin, 1923).

    Google Scholar 

  2. O. Bottema and B. Roth,Theoretical Kinematics (North-Holland, Amsterdam, 1979).

    MATH  Google Scholar 

  3. M. Eck, MQ-curves are curves in tension, in:Mathematical Methods in CAGD and Image Processing, ed. T. Lyche and L.L. Schumaker (Academic Press, Boston, 1992).

    Google Scholar 

  4. G. Farin,Curves and Surfaces for Computer Aided Geometric Design, 2nd ed. (Academic Press, 1990).

  5. R.T. Farouki and T. Sakkalis, Real rational curves are not “unit speed”, Comp. Aided Geom. Design 8(1991)151–157.

    Article  MATH  MathSciNet  Google Scholar 

  6. Q.J. Ge and B. Ravani, Computer aided geometric design of motion interpolants,Proc. 1991 ASME Design Automation Conf., DE-Vol. 32–2 (1991) pp. 33–41.

    Google Scholar 

  7. H. Horninger, Über Radlinien und Zykloidenn-ter Stufe, Monatsh. Math. 72(1968)335–346.

    Article  MATH  MathSciNet  Google Scholar 

  8. O. Haupt and H. Künneth,Geometrische Ordnungen (Springer, Berlin/Heidelberg, 1967).

    MATH  Google Scholar 

  9. J. Hoschek and D. Lasser,Grundlagen der geometrischen Datenverarbeitung, 2nd ed. (Teubner, Stuttgart, 1992).

    MATH  Google Scholar 

  10. S. Karlin and W.J. Studden,Tchebycheff Systems. With Applications in Analysis and Statistics (Wiley-Interscience, New York, 1966).

    MATH  Google Scholar 

  11. P.E. Koch and T. Lyche, Exponential B-splines in tension, in:Approximation Theory, ed. C.K. Chui, L.L. Schumaker and J.D. Ward (Academic Press, New York, 1989), pp. 361–364.

    Google Scholar 

  12. P.E. Koch and T. Lyche, Construction of exponential tension B-splines of arbitrary order, in:Curves and Surfaces, ed. P.J. Laurent, A. LeMéhauté and L.L. Schumaker (Academic Press, Boston, 1991) pp. 255–258.

    Google Scholar 

  13. P.E. Koch and T. Lyche, Interpolation with exponential B-splines in tension, in:Geometric Modeling, ed. G. Farin et al. (Computing/Suppl. 8, 1993).

  14. S. Mick and O. Röschel, Interpolation of helical patches by kinematic rational Bézier patches, Comp. Graphics 14(1990)275–280.

    Article  Google Scholar 

  15. H. Pottmann and T.D. DeRose, Classification using normal curves, in:Curves and Surfaces in Computer Vision and Graphis II, SPIE Proc. 1610(1991)217–228.

  16. H. Pottmann, The geometry of Tchebycheffian splines, Comp. Aided. Geom. Design 10(1993) 181–210.

    Article  MATH  MathSciNet  Google Scholar 

  17. F.P. Preparata and M.I. Shamos,Computational Geometry (Springer, New York, 1985).

    MATH  Google Scholar 

  18. L. Ramshaw, Blossoms are polar forms, Comp. Aided Geom. Design 6(1989)323–358.

    Article  MATH  MathSciNet  Google Scholar 

  19. K. Shoemake, Animating rotation with quaternion curves,ACM Siggraph Vol. 19(1985) pp. 245–254.

    Article  Google Scholar 

  20. L.L. Schumaker,Spline Functions: Basic Theory (Wiley-Interscience, New York, 1981).

    Google Scholar 

  21. H.P. Seidel, Knot insertion from a blossoming point of view, Comp. Aided Geom. Design 5(1988) 81–86.

    Article  MATH  MathSciNet  Google Scholar 

  22. H.P. Seidel, A new multiaffine approach to B-splines, Comp. Aided Geom. Design 6(1989)23–32.

    Article  MATH  MathSciNet  Google Scholar 

  23. H.P. Seidel, New algorithms and techniques for computing with geometrically continuous spline curves of arbitrary degree, Math. Mod. Numer. Anal. 26(1992)149–176.

    MATH  MathSciNet  Google Scholar 

  24. M.C. Stone and T.D. DeRose, A geometric characterization of cubic curves, ACM Trans. Graphics 8(1989)143–163.

    Article  Google Scholar 

  25. M.G. Wagner and H. Pottmann, Rational B-spline motions, to be published.

  26. W. Wunderlich,Ebene Kinematik (Bibliographisches Institut, Mannheim/Wien/Zürich (1970).

    MATH  Google Scholar 

  27. W. Wunderlich, Ein vierdimensionales Abbildungsprinzip für ebene Bewegungen, ZAMM 66(1986) 421–428.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pottmann, H., Wagner, M.G. Helix splines as an example of affine Tchebycheffian splines. Adv Comput Math 2, 123–142 (1994). https://doi.org/10.1007/BF02519039

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02519039

Keywords

Navigation