×

Determining the dimension of iterative Hessian transformation. (English) Zbl 1069.62033

Summary: The central mean subspace (CMS) and iterative Hessian transformation (IHT) have been introduced recently for dimension reduction when the conditional mean is of interest. Suppose that \(X\) is a vector-valued predictor and \(Y\) is a scalar response. The basic problem is to find a lower-dimensional predictor \(\eta^TX\) such that \(E(Y\mid X)= E(Y\mid \eta^TX)\). The CMS defines the inferential object for this problem and IHT provides an estimating procedure. Compared with other methods, IHT requires fewer assumptions and has been shown to perform well when the additional assumptions required by those methods fail.
We give an asymptotic analysis of IHT and provide stepwise asymptotic hypothesis tests to determine the dimension of the CMS, as estimated by IHT. Here, the original IHT method has been modified to be invariant under location and scale transformations. To provide empirical support for our asymptotic results, we will present a series of simulation studies. These agree well with the theory. The method is applied to analyze an ozone data set.

MSC:

62G08 Nonparametric regression and quantile regression
62H10 Multivariate distribution of statistics
62E20 Asymptotic distribution theory in statistics
62G09 Nonparametric statistical resampling methods
62G20 Asymptotic properties of nonparametric inference

Software:

ARC

References:

[1] Breiman, L. and Friedman, J. (1985). Estimating optimal transformations for multiple regression and correlation (with discussion). J. Amer. Statist. Assoc. 80 580–619. · Zbl 0594.62044 · doi:10.2307/2288473
[2] Bura, E. and Cook, R. D. (2001). Estimating the structural dimension of regressions via parametric inverse regression. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 393–410. · Zbl 0979.62041 · doi:10.1111/1467-9868.00292
[3] Clark, R. G., Henderson, H. V., Hoggard, G. K., Ellison, R. S. and Young, B. J. (1987). The ability of biochemical and haematological tests to predict recovery in periparturient recumbent cows. New Zealand Veterinary J. 35 126–133.
[4] Cook, R. D. (1998a). Regression Graphics . Wiley, New York. · Zbl 0903.62001
[5] Cook, R. D. (1998b). Principal Hessian directions revisited (with discussion). J. Amer. Statist. Assoc. 93 84–100. · Zbl 0922.62057 · doi:10.2307/2669605
[6] Cook, R. D. and Critchley, F. (2000). Identifying regression outliers and mixtures graphically. J. Amer. Statist. Assoc. 95 781–794. · Zbl 0999.62056 · doi:10.2307/2669462
[7] Cook, R. D. and Li, B. (2002). Dimension reduction for the conditional mean in regression. Ann. Statist. 30 455–474. · Zbl 1012.62035 · doi:10.1214/aos/1021379861
[8] Cook, R. D. and Nachtsheim, C. J. (1994). Reweighting to achieve elliptically contoured covariates in regression. J. Amer. Statist. Assoc. 89 592–599. · Zbl 0799.62078 · doi:10.2307/2290862
[9] Cook, R. D. and Weisberg, S. (1991). Discussion of “Sliced inverse regression for dimension reduction,” by K. C. Li. J. Amer. Statist. Assoc. 86 328–332. · Zbl 1353.62037
[10] Cook, R. D. and Weisberg, S. (1999). Applied Regression Including Computing and Graphics. Wiley, New York. · Zbl 0928.62045
[11] Diaconis, P. and Freedman, D. (1984). Asymptotics of graphical projection pursuit. Ann. Statist. 12 793–815. JSTOR: · Zbl 0559.62002 · doi:10.1214/aos/1176346703
[12] Eaton, M. L. (1986). A characterization of spherical distributions. J. Multivariate Anal. 20 272–276. · Zbl 0596.62057 · doi:10.1016/0047-259X(86)90083-7
[13] Eaton, M. L. and Tyler, D. E. (1994). The asymptotic distribution of singular values with applications to canonical correlations and correspondence analysis. J. Multivariate Anal. 50 238–264. · Zbl 0805.62020 · doi:10.1006/jmva.1994.1041
[14] Field, C. (1993). Tail areas of linear combinations of chi-squares and non-central chi-squares. J. Statist. Comput. Simulation 45 243–248. · Zbl 0925.62062 · doi:10.1080/00949659308811484
[15] Gather, U., Hilker, T. and Becker, C. (2001). A robustified version of sliced inverse regression. In Statistics in Genetics and in the Environmental Sciences (L. T. Fernholz, S. Morgenthaler and W. Stahel, eds.) 147–157. Birkhäuser, Basel.
[16] Gather, U., Hilker, T. and Becker, C. (2002). A note on outlier sensitivity of sliced inverse regression. Statistics 36 271–281. · Zbl 1020.62023 · doi:10.1080/02331880213194
[17] Hall, P. and Li, K. C. (1993). On almost linearity of low-dimensional projections from high-dimensional data. Ann. Statist. 21 867–889. JSTOR: · Zbl 0782.62065 · doi:10.1214/aos/1176349155
[18] Li, B., Cook, R. D. and Chiaromonte, F. (2003). Dimension reduction for the conditional mean in regressions with categorical predictors. Ann. Statist. 31 1636–1668. · Zbl 1042.62037 · doi:10.1214/aos/1065705121
[19] Li, K. C. (1991). Sliced inverse regression for dimension reduction (with discussion). J. Amer. Statist. Assoc. 86 316–342. · Zbl 0742.62044 · doi:10.2307/2290563
[20] Li, K. C. (1992). On principal Hessian directions for data visualization and dimension reduction: Another application of Stein’s lemma. J. Amer. Statist. Assoc. 87 1025–1039. · Zbl 0765.62003 · doi:10.2307/2290640
[21] Li, K. C. and Duan, N. (1989). Regression analysis under link violation. Ann. Statist. 17 1009–1052. JSTOR: · Zbl 0753.62041 · doi:10.1214/aos/1176347254
[22] Rao, C. R. (1965). Linear Statistical Inference and Its Applications . Wiley, New York. · Zbl 0137.36203
[23] Schott, J. (1994). Determining the dimensionality in sliced inverse regression. J. Amer. Statist. Assoc. 89 141–148. · Zbl 0791.62069 · doi:10.2307/2291210
[24] Yin, X. and Cook, R. D. (2002). Dimension reduction for the conditional \(k\)th moment in regression. J. R. Stat. Soc. Ser. B Stat. Methodol. 64 159–175. · Zbl 1067.62042 · doi:10.1111/1467-9868.00330
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.