×

An approximation theorem of Wong-Zakai type for nonlinear stochastic partial differential equations. (English) Zbl 0839.60059

Summary: We present an extension of the Wong-Zakai approximation theorem for nonlinear stochastic partial differential equations defined in abstract spaces and with some Hilbert space valued disturbances given by the Wiener process and a martingale. By approximating these disturbances we obtain in the limit equation the Itô correction term for the infinite-dimensional case. Such form of the correction term connected with the Wiener process was proved in the author’s papers [ibid. 10, No. 4, 471-500 (1992; Zbl 0754.60060) and Diss. Math. 325 (1993; Zbl 0777.60051)], where the approximation theorem for semilinear stochastic evolution equations in Hilbert spaces was studied. Our model here is similar as the one considered by E. Pardoux [“Equations aux dérivées partielles stochastiques non linéaires monotones. Etude de solutions fortes de type Itô” (Thèse, Univ. Paris Sud, 1975)].

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60F15 Strong limit theorems
Full Text: DOI

References:

[1] DOI: 10.1080/07362998408809031 · Zbl 0547.60066 · doi:10.1080/07362998408809031
[2] Bensoussan A., pitman Research Notes in Math 268 pp 37– (1992)
[3] DOI: 10.1007/BF02761449 · Zbl 0241.35009 · doi:10.1007/BF02761449
[4] Brzéniak Z., Stochastics 24 pp 423– (1988) · Zbl 0653.60049 · doi:10.1080/17442508808833526
[5] DOI: 10.1007/BFb0006761 · doi:10.1007/BFb0006761
[6] DOI: 10.1016/0047-259X(75)90054-8 · Zbl 0299.60050 · doi:10.1016/0047-259X(75)90054-8
[7] Doss H., Ann. Inst.H. Poincaré 13 pp 99– (1977)
[8] Fleming W., Int. Symp. IRIA pp 179– (1975)
[9] Gyöngy I., Stochastics 7 pp 231– (1982)
[10] Gyöngy I., Theorems on supports pp 91– (1989) · Zbl 0683.93092
[11] Ikeda N., Stochastic Differential Equations and Diffusion Processes (1981) · Zbl 0495.60005
[12] Krylov N.U., Itogi Nauki i Techniki 14 pp 71– (1979)
[13] Lions J.L., Quelques Méthodes de Résolution de Problèmes aux Limites non Linéaires (1969)
[14] Mackevičius W., Lietuvos Matematikos Rinkinys 26 pp 91– (1986)
[15] DOI: 10.1007/BF00539856 · Zbl 0325.60054 · doi:10.1007/BF00539856
[16] Nakao, S. and Yamato, Y. Approximation theorem of stochastic differential equations. Proc.Internat.Sympos. SDE. 1976, Kyoto. pp.283–196. Tokyo
[17] Pardoux E., Etude de solutions fortes de type Itô (1975)
[18] Pardoux E., Stochastics 3 pp 127– (1979) · Zbl 0424.60067 · doi:10.1080/17442507908833142
[19] Rozovskii B.L., Linear Theory and Applications to Non- linear Filtering (1990)
[20] Tanabe H., Monographs andStudies in Math 6 (1979)
[21] DOI: 10.1080/07362999208809284 · Zbl 0754.60060 · doi:10.1080/07362999208809284
[22] Twardowska K., Dissertationes Math 325 pp 1– (1993)
[23] DOI: 10.1214/aoms/1177699916 · Zbl 0138.11201 · doi:10.1214/aoms/1177699916
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.