×

On Davis-Januszkiewicz homotopy types I: formality and rationalisation. (English) Zbl 1065.55006

Let \(K\) be a simplicial complex. Davis and Januszkiewicz have defined a CW complex whose integral cohomology ring is isomorphic to the Stanley-Reisner algebra of \(K\). Subsequently, Buchstaber and Panov gave an alternative description, denoted here by \(c(K)\). In fact, \(c(K)\) is the colimit of the diagram whose objects are the \(K(\mathbb{Z}, 2)^{\dim\sigma}\) with \(\sigma\in K\) and the arrows correspond to the injections of simplices. The authors make a study of this space in terms of model category theory. They prove that the space is formal over the integers and also in rational homotopy.

MSC:

55P62 Rational homotopy theory
55U05 Abstract complexes in algebraic topology
05E99 Algebraic combinatorics

References:

[1] A K Bousfield, V K A M Gugenheim, On \(\mathrm{PL}\) de Rham theory and rational homotopy type, Mem. Amer. Math. Soc. 8 (1976) · Zbl 0338.55008
[2] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics 304, Springer (1972) · Zbl 0259.55004
[3] W Bruns, J Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press (1993) · Zbl 0788.13005
[4] V M Buchstaber, T E Panov, Torus actions and their applications in topology and combinatorics, University Lecture Series 24, American Mathematical Society (2002) · Zbl 1012.52021
[5] H Cartan, S Eilenberg, Homological algebra, Princeton University Press (1956) · Zbl 0075.24305
[6] W Chachólski, J Scherer, Homotopy theory of diagrams, Mem. Amer. Math. Soc. 155 (2002) · Zbl 1006.18015
[7] M W Davis, T Januszkiewicz, Convex polytopes, Coxeter orbifolds and torus actions, Duke Math. J. 62 (1991) 417 · Zbl 0733.52006 · doi:10.1215/S0012-7094-91-06217-4
[8] W G Dwyer, Classifying spaces and homology decompositions, Advanced Courses in Mathematics, CRM Barcelona, Birkhäuser (2001) 1
[9] W G Dwyer, J Spaliński, Homotopy theories and model categories (editor I M James), North-Holland (1995) 73 · Zbl 0869.55018
[10] Y Félix, S Halperin, J C Thomas, Rational homotopy theory, Graduate Texts in Mathematics 205, Springer (2001)
[11] M Franz, On the integral cohomology of smooth toric varieties
[12] P Gabriel, M Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 35, Springer New York, New York (1967) · Zbl 0186.56802
[13] J A Green, Axiomatic representation theory for finite groups, J. Pure Appl. Algebra 1 (1971) 41 · Zbl 0249.20005 · doi:10.1016/0022-4049(71)90011-9
[14] J Hollender, R M Vogt, Modules of topological spaces, applications to homotopy limits and \(E_\infty\) structures, Arch. Math. \((\)Basel\()\) 59 (1992) 115 · Zbl 0766.55006 · doi:10.1007/BF01190675
[15] M Hovey, Model categories, Mathematical Surveys and Monographs 63, American Mathematical Society (1999) · Zbl 0909.55001
[16] S Jackowski, J McClure, Homotopy decomposition of classifying spaces via elementary abelian subgroups, Topology 31 (1992) 113 · Zbl 0754.55014 · doi:10.1016/0040-9383(92)90065-P
[17] S Mac Lane, Categories for the working mathematician, Graduate Texts in Mathematics 5, Springer (1998) · Zbl 0906.18001
[18] J P May, Simplicial objects in algebraic topology, Van Nostrand Mathematical Studies 11, D. Van Nostrand Co., Princeton, N.J.-Toronto, Ont.-London (1967) · Zbl 0165.26004
[19] D Notbohm, N Ray, On Davis-Januskiewicz homotopy types II: completion and globalisation, in preparation · Zbl 1198.55005 · doi:10.2140/agt.2010.10.1747
[20] B Oliver, Higher limits via Steinberg representations, Comm. Algebra 22 (1994) 1381 · Zbl 0815.55003 · doi:10.1080/00927879408824911
[21] T Panov, N Ray, R Vogt, Colimits, Stanley-Reisner algebras, and loop spaces, Progr. Math. 215, Birkhäuser (2004) 261 · Zbl 1049.55010
[22] S Schwede, B E Shipley, Algebras and modules in monoidal model categories, Proc. London Math. Soc. \((3)\) 80 (2000) 491 · Zbl 1026.18004 · doi:10.1112/S002461150001220X
[23] R P Stanley, Combinatorics and commutative algebra, Progress in Mathematics 41, Birkhäuser (1996) · Zbl 0838.13008
[24] D Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. (1977) · Zbl 0374.57002 · doi:10.1007/BF02684341
[25] R M Vogt, Convenient categories of topological spaces for homotopy theory, Arch. Math. \((\)Basel\()\) 22 (1971) 545 · Zbl 0237.54001 · doi:10.1007/BF01222616
[26] V Welker, G M Ziegler, R T , Homotopy colimits-comparison lemmas for combinatorial applications, J. Reine Angew. Math. 509 (1999) 117 · Zbl 0995.55004 · doi:10.1515/crll.1999.035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.