×

Modules of topological spaces, applications to homotopy limits and \(E_ \infty\) structures. (English) Zbl 0766.55006

The idea of this paper is to apply homological methods to diagrams of topological spaces. The authors use the term \(\mathcal C\)-module for a diagram indexed by a category \(\mathcal C\). They define tensor products, hom- factors and bar constructions, and show that they have many of the usual properties. As a more or less immediate consequence, they derive much of the theory of homotopy limits and colimits. They also give non- computational proofs of some results in infinite loop space theory.

MSC:

55P47 Infinite loop spaces
Full Text: DOI

References:

[1] J. M.Boardman and R. M.Vogt, Homotopy invariant structures on topological spaces. LNM347, Berlin-Heidelberg-New York 1973. · Zbl 0285.55012
[2] A. K.Bousfield and D. M.Kan, Homotopy limits, completions and localizations. LNM304, Berlin-Heidelberg-New York 1972. · Zbl 0259.55004
[3] W. G. Dwyer andD. M. Kan, Function complexes for diagrams of simplicial sets. Indag. Math.45, 139-147 (1983). · Zbl 0524.55021
[4] W. G. Dwyer andD. M. Kan, A classification theorem for diagrams of simplicial sets. Topology23, 139-155 (1984). · Zbl 0545.55007 · doi:10.1016/0040-9383(84)90035-1
[5] E. E.Floyd and W. J.Floyd, Actions of the classical small categories of topology. Preprint 1989. · Zbl 0747.68041
[6] J. P.May,E ? ring spaces andE ? ring spectra. LNM577, Berlin-Heidelberg-New York 1977.
[7] J. P. May, Pairings of categories and spectra. J. Pure Appl. Algebra19, 299-346 (1980). · Zbl 0469.18009 · doi:10.1016/0022-4049(80)90105-X
[8] J. P. May, Multiplicative infinite loop space theory. J. Pure Appl. Algebra26, 1-69 (1982). · Zbl 0532.55013 · doi:10.1016/0022-4049(82)90029-9
[9] J. P. May andR. Thomason, The uniqueness of infinite loop space machines. Topology17, 205-224 (1978). · Zbl 0391.55007 · doi:10.1016/0040-9383(78)90026-5
[10] J.-P. Meyer, Bar and cobar constructions I. J. Pure Appl. Algebra33, 163-207 (1984). · Zbl 0542.57036 · doi:10.1016/0022-4049(84)90005-7
[11] D. G. Quillen, Higher algebraick-theory I. LNM341, 85-147, Berlin-Heidelberg-New York 1973. · Zbl 0292.18004
[12] R. Schwänzl andR. M. Vogt, 129-01-spaces and injective?-spaces. Manuscripta Math.61, 203-214 (1988). · Zbl 0649.57018 · doi:10.1007/BF01259329
[13] R.Schwänzl and R. M.Vogt, Basic constructions in theK-theory of homotopy ring spaces. Preprint 1990.
[14] G. B. Segal, Classifying spaces and spectral sequences. Inst. Haut. Etud. Sci., Publ. Math.34, 105-112 (1968). · Zbl 0199.26404 · doi:10.1007/BF02684591
[15] G. B. Segal, Categories and cohomology theories. Topology13, 293-312 (1974). · Zbl 0284.55016 · doi:10.1016/0040-9383(74)90022-6
[16] R. Steiner, A canonical operad pair. Math. Proc. Cambridge Philos. Soc.86, 443-449 (1979). · Zbl 0442.55009 · doi:10.1017/S0305004100056292
[17] R. Steiner, Infinite loop structures on the algebraicK-theory of spaces. Math. Proc. Cambridge Philos. Soc.90, 85-111 (1981). · Zbl 0478.55008 · doi:10.1017/S0305004100058540
[18] R. Thomason, Homotopy colimits in the category of small categories. Math. Proc. Cambridge Philos. Soc.85, 91-109 (1979). · Zbl 0392.18001 · doi:10.1017/S0305004100055535
[19] R. M. Vogt, Convenient categories of topological spaces for homotopy theory. Arch. Math.22, 545-555 (1971). · Zbl 0237.54001 · doi:10.1007/BF01222616
[20] R. M. Vogt, Homotopy limits and colimits. Math. Z.134, 11-52 (1973). · Zbl 0276.55006 · doi:10.1007/BF01219090
[21] R. M. Vogt, Commuting homotopy limits. Math. Z.153, 59-82 (1977). · Zbl 0337.55013 · doi:10.1007/BF01214734
[22] H.Wellen, Projektive Diagramme über topologischen Kategorien. Diplomarbeit, Universität Osnabrück 1990.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.