×

Entanglement for pair production on the zeptosecond scale. (English) Zbl 1064.81541

Summary: We analyse the degree of two-particle entanglement between an electron and a positron that are created in vacuum in the presence of a supercritical field. This degree of entanglement is determined from the spatially and temporally resolved two-particle wave function calculated from relativistic quantum field theory. Some spin components of the two particles are fully correlated with respect to a simultaneous measurement. However, the positions where the two particles are created by the field can be apart from each other by as much as the Compton wavelength for an extended supercritical field. We calculate the \(K\) parameter from the two-particle wave function as a quantitative measure for the degree of entanglement.

MSC:

81V35 Nuclear physics
Full Text: DOI

References:

[1] Greiner W, Quantum Electrodynamics of Strong Fields (1985)
[2] DOI: 10.1103/PhysRevLett.93.043004 · doi:10.1103/PhysRevLett.93.043004
[3] Schrödinger E, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl 24 pp 418– (1930)
[4] DOI: 10.1103/RevModPhys.21.400 · Zbl 0036.26704 · doi:10.1103/RevModPhys.21.400
[5] DOI: 10.1007/BF01400205 · JFM 53.0871.01 · doi:10.1007/BF01400205
[6] DOI: 10.1103/PhysRevLett.92.040406 · doi:10.1103/PhysRevLett.92.040406
[7] Bjorken JD, Relativistic Quantum Mechanics (1965)
[8] Thaller B, The Dirac Equation (1992) · doi:10.1007/978-3-662-02753-0
[9] Schwabl F, Quantum Mechanics (1952)
[10] DOI: 10.1017/CBO9780511622755 · doi:10.1017/CBO9780511622755
[11] Milonni PW, The Quantum Vacuum, Boston: Academic Press (1994)
[12] DOI: 10.1119/1.19174 · doi:10.1119/1.19174
[13] www.phy.ilstu.edu/ILP/movies/kleinmovie/
[14] DOI: 10.1088/0953-4075/27/16/001 · doi:10.1088/0953-4075/27/16/001
[15] DOI: 10.1007/BF01449770 · JFM 38.0377.02 · doi:10.1007/BF01449770
[16] DOI: 10.1103/RevModPhys.29.454 · doi:10.1103/RevModPhys.29.454
[17] DOI: 10.1016/S0010-4655(98)00112-X · doi:10.1016/S0010-4655(98)00112-X
[18] DOI: 10.1017/CBO9780511524547 · doi:10.1017/CBO9780511524547
[19] DOI: 10.1103/PhysRevLett.83.520 · doi:10.1103/PhysRevLett.83.520
[20] DOI: 10.1103/PhysRevA.52.149 · doi:10.1103/PhysRevA.52.149
[21] Wagner RE, Las. Phys. 11 pp 221– (2001)
[22] Popov AM, Laser Phys 14 pp 200– (2004)
[23] Schweber SS, An Introduction to Relativistic Quantum Field Theory (1962) · Zbl 0111.43102
[24] DOI: 10.1103/PhysRevA.59.604 · doi:10.1103/PhysRevA.59.604
[25] Mocken G, J. Comput. Phys. (2004)
[26] DOI: 10.1119/1.18891 · doi:10.1119/1.18891
[27] www.phy.ilstu.edu/ILP/movies/pairmovie/
[28] DOI: 10.1103/PhysRevA.69.052117 · doi:10.1103/PhysRevA.69.052117
[29] The Economist 370 pp 77– (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.