×

Minimum cost trajectory planning for industrial robots. (English) Zbl 1060.70016

Summary: We discuss the problem of minimum cost trajectory planning for robotic manipulators. It consists of linking two points in the operational space while minimizing a cost function, taking into account dynamic equations of motion as well as bounds on joint positions, velocities, jerks and torques. This generic optimal control problem is transformed, via a clamped cubic spline model of joint temporal evolutions, into a nonlinear constrained optimization problem which is treated then by the sequential quadratic programming method. Applications involving grasping mobile object or obstacle avoidance illustrate the efficiency of the proposed planning.

MSC:

70E60 Robot dynamics and control of rigid bodies
70Q05 Control of mechanical systems

Software:

NLPQL
Full Text: DOI

References:

[1] Angeles, J., Fundamentals of Robotic Mechanical Systems. Theory, Methods, and Algorithms (1997), Springer · Zbl 0865.70001
[2] Armstrong, B.; Khatib, O.; Burdick, J., The explicit dynamic model and inertial parameters of PUMA 560 arm, (IEEE Int. Conf. on Rob. & Aut., San Francisco (1986)), 510-518
[3] Barclay, A., Gill, P.E., Rosen, J.B., 1997. SQP Methods and their application to numerical optimal control. Report NA97-3, Department of Mathematics, University of California, San Diego; Barclay, A., Gill, P.E., Rosen, J.B., 1997. SQP Methods and their application to numerical optimal control. Report NA97-3, Department of Mathematics, University of California, San Diego · Zbl 0956.90024
[4] Bessonnet, G., 1992. Optimisation dynamique des mouvements point à point de robots manipulateurs. Thèse d’état, Université de Poitiers, France; Bessonnet, G., 1992. Optimisation dynamique des mouvements point à point de robots manipulateurs. Thèse d’état, Université de Poitiers, France
[5] Betts, J. T., Survey of numerical methods for trajectory optimization, J. Guidance Cont. Dyn., 21, 2, 193-207 (1998) · Zbl 1158.49303
[6] Bobrow, J. E.; Dubowsky, S.; Gibson, J. S., Time optimal control of robotic manipulators along specified paths, Int. J. Rob. Res., 4, 3, 3-15 (1985)
[7] Bobrow, J. E.; Martin, B. J.; Sohl, G.; Wang, E. C.; Park, F. C.; Kim, J., Optimal robot motions for physical criteria, J. Rob. Syst., 18, 12, 785-795 (2001) · Zbl 1065.70006
[8] Chettibi, T., 2000. Contribution à l’exploitation optimale des bras manipulateurs. Mémoire de Magister, EMP, Algiers, Algeria; Chettibi, T., 2000. Contribution à l’exploitation optimale des bras manipulateurs. Mémoire de Magister, EMP, Algiers, Algeria
[9] Chettibi, T., 2001. Optimal motion planning of robotic manipulators. Maghrebine Conference of Electric Engineering, Constantine, Algeria; Chettibi, T., 2001. Optimal motion planning of robotic manipulators. Maghrebine Conference of Electric Engineering, Constantine, Algeria
[10] Chettibi, T., Research of optimal free motions of manipulators robots by non-linear optimisation, (Séminaire international de génie mécanique, Oran, Algeria (2002)), 317-325
[11] Chettibi, T.; Lehtihet, H. E., A new approach for point to point optimal motion planning problems of robotic manipulators, (6th Biennial Conf. on Engineering Syst. Design and Analysis (ASME), Turkey (2002)), APM10 · Zbl 1150.70005
[12] Chettibi, T., Yousnadj, A., 2001. Optimal motion planning of robotic manipulators along specified geometric path. Int. Conf. on Productic, Algiers, Algeria; Chettibi, T., Yousnadj, A., 2001. Optimal motion planning of robotic manipulators along specified geometric path. Int. Conf. on Productic, Algiers, Algeria
[13] Danes, F., 1998. Critères et contraintes pour la synthèse optimale des mouvements de robots manipulateurs. Application à l’évitement d’obstacles. Thèse d’état, Université de Poitiers; Danes, F., 1998. Critères et contraintes pour la synthèse optimale des mouvements de robots manipulateurs. Application à l’évitement d’obstacles. Thèse d’état, Université de Poitiers
[14] Dombre, E.; Khalil, W., Modélisation et commande des robots (1988), Hermes
[15] Eltimsahy, A.H., Yang, W.S., 1988. Near minimum time control of robotic manipulator with obstacles in the workspace. CH2555-1/88/000/IEEE, pp. 358-363; Eltimsahy, A.H., Yang, W.S., 1988. Near minimum time control of robotic manipulator with obstacles in the workspace. CH2555-1/88/000/IEEE, pp. 358-363
[16] Fletcher, R., Practical methods of Optimization (1987), Wiley · Zbl 0905.65002
[17] Gaudin, H.; Bessonnet, G., From identification to motion optimisation of a planar manipulator, Robotica, 13, 123-132 (1995)
[18] Glass, K.; Colbaugh, R.; Lim, D.; Seradji, H., Real time collision avoidance for redundant manipulators, IEEE Trans. Rob. Aut., 11, 3, 448-457 (1995)
[19] Hentout, A., 2004. Planification de trajectoires sans collision pour les robots manipulateurs. Mémoire de Magister, EMP, Algiers, Algeria; Hentout, A., 2004. Planification de trajectoires sans collision pour les robots manipulateurs. Mémoire de Magister, EMP, Algiers, Algeria
[20] Hull, D. G., Conversion of optimal control problems into parameter optimization problems, J. Guidance Cont. Dyn., 20, 1, 57-62 (1997) · Zbl 0912.90256
[21] Jaques, J.; Soltine, E.; Yang, H. S., Improving the efficiency of time-optimal path following algorithms, IEEE Trans. Rob. Aut., 5, 1 (1989)
[22] Kahn, M. E.; Roth, B., The near minimum time control of open loop articulated kinematic chains, ASME J. Dyn. Syst. Meas. Contr., 11, 164-172 (1971)
[23] Kang, G. S.; McKay, D. N., Selection of near minimum time geometric paths for robotic manipulators, IEEE Trans. Aut. Contr., AC-31, 6, 501-512 (1986) · Zbl 0628.93046
[24] Lazrak, M., 1996. Nouvelle approche de commande optimale en temps final libre et construction d’algorithmes de commande de systèmes articulés. Thèse d’état, Université de Poitiers, France; Lazrak, M., 1996. Nouvelle approche de commande optimale en temps final libre et construction d’algorithmes de commande de systèmes articulés. Thèse d’état, Université de Poitiers, France
[25] Luh, J. Y.S.; Lin, C. S., Optimum path planning for mechanical manipulators, Trans. ASME J. Dyn. Syst. Meas. Contr., 102, 142-151 (1981)
[26] Luh, J. Y.S.; Walker, M. W., Minimum time along the path for mechanical manipulators, (IEEE Conf. Decision & Cont., New Orleans, LA (1977)), 755-759
[27] Macfarlane, S.; Croft, E. A., Design of jerk bounded trajectories for on-line industrial robot applications, (Proc. IEEE Int. Conf. Rob. & Aut. (2001)), 979-984
[28] Mao, Z.; Hsia, T. C., Obstacle avoidance inverse kinematics solution of redundant robots by neural networks, Robotica, 15, 3-10 (1997)
[29] Martin, B. J.; Bobrow, J. E., Minimum effort motions for open chain manipulators with task dependent end-effector constraints, (Proc. IEEE Int. Conf. Rob. & Aut., Albuquerque, NM (1997)), 2044-2049
[30] Martin, B. J.; Bobrow, J. E., Minimum effort motions for open chain manipulators with task dependent end-effector constraints, Int. J. Rob. Res., 18, 2, 213-224 (1999)
[31] Nearchou, A. C.; Aspragathos, N. A., A genetic path planning for redundant articulated robots, Robotica, 15, 213-224 (1997)
[32] Pfeiffer, F.; Rainer, J., A concept for manipulator trajectory planning, IEEE J. Rob. Aut., Ra-3, 3, 115-123 (1987)
[33] Piazzi, A.; Visioli, A., Global minimum time trajectory planning of mechanical manipulators using internal analysis, Int. J. Cont., 71, 4, 631-652 (1998) · Zbl 0938.93576
[34] Pontryagin, L.; Boltianski, V.; Gamkrelidze, R.; Michtchenko, E., Théorie mathématique des processus optimaux (1965), Mir
[35] Powell, M. J., Algorithm for non-linear constraints that use Lagrangian functions, Math. Programming, 14, 224-248 (1984) · Zbl 0383.90092
[36] Rebai, S., 2002. Contribution à la planification optimale des mouvements libres des robots manipulateurs. Mémoire de Magister, EMP, Algiers, Algeria; Rebai, S., 2002. Contribution à la planification optimale des mouvements libres des robots manipulateurs. Mémoire de Magister, EMP, Algiers, Algeria
[37] Richard, M. J.; Dufourn, F.; Tarasiewicz, S., Commande des robots manipulateurs par la programmation dynamique, Mech. Mach. Theory, 28, 3, 301-316 (1993)
[38] Schittowski, K., NLQPL: a FORTRAN-subroutine solving constrained nonlinear programming problems, Ann. Oper. Res., 5, 485-500 (1985)
[39] Shiller, Z.; Dubowsky, S., Robot path planning with obstacles, actuators, gripper and payload constraints, Int. J. Rob. Res., 8, 6, 3-18 (1986)
[40] Shin, G. H.; Mckay, D. N., A dynamic programming approach to trajectory planning of robotic manipulators, IEEE Trans. Aut. Contr., AC-31, 6, 450-491 (1986) · Zbl 0588.93032
[41] Tan, H. H.; Potts, R. B., Minimum time trajectory planner for the discrete dynamic robot model with dynamic constraints, IEEE J. Rob. Aut., 4, 2, 174-185 (1988)
[42] Yamamoto, M.; Ozaki, H., Planning of manipulator joint trajectories by an iterative method, Robotica, 6, 101-105 (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.