×

Existence and equivalence with an optimization problem for some difference inclusions. (English) Zbl 1056.39001

Let \(H\) be a real Hilbert space with a scalar product \((\cdot,\cdot)\). Let \(A:D(A)\subset H\to H\) and \(\alpha:D(A)\subset H\to H\) be maximal monotone operators [see V. Barbu, Nonlinear semigroups and differential equations in Banach spaces. Revised and enlarged translation of the Romanian ed. (1976; Zbl 0328.47035) for basic properties] such that \(0\in D(A)\cap D(\alpha)\) and \(0\in\alpha(0)\). Let \(0<\theta_n<1\) for \(n\geq 1\) and \(a_0=1, a_n=(\theta_1\dots\theta_n)^{-1}\) for \(n>1\). The author considers the Hilbert space \({\mathcal L}=\ell^2(H)\) endowed with the scalar product \(\langle (u_n)_n,(v_n)_n\rangle=\sum_{n=1}^\infty a_n(u_n,v_n)\) and studies the following difference inclusion problem \[ u_{n+1}-(1+\theta_n)u_n+\theta_n u_{n-1}\in c_nAu_n+f_n,\quad u_1-u_0\in\alpha(u_0-a), \] where \(a\in H\) is fixed, \((u_n)_n\in{\mathcal L}\), and \(f_n\in H\), \(c_n>0\) for all \(n\geq 1\). He establishes the maximal monotonicity of the operator \(B\) defined by \(B((u_n)_n)=(-u_{n+1}+(1+\theta_n)u_n-\theta_n u_{n-1})_n\) with the domain \(D(B)=\{(u_n)_n\in{\mathcal L},u_1-u_0\in\alpha(u_0-a)\}\). This fact is the key ingredient in the given proof of the existence of solutions of the above difference inclusion problem. Moreover, if \(A\) or \(\alpha\) is one-to-one, then the solution is unique. The author proves also that the above difference inclusion problem is equivalent to some minimization problem. Finally, he considers some examples.

MSC:

39A05 General theory of difference equations
49K27 Optimality conditions for problems in abstract spaces
47H05 Monotone operators and generalizations
39A12 Discrete version of topics in analysis

Citations:

Zbl 0328.47035
Full Text: DOI

References:

[1] Aftabizadeh, A. R.; Pavel, N. H., Boundary value problems for second order differential equations and a convex problem of Bolza, Differential Integral Equations, 2, 495-509 (1989) · Zbl 0723.34045
[2] Aftabizadeh, A. R.; Pavel, N. H., Nonlinear boundary value problems for some ordinary and partial differential equations associated with monotone operators, J. Math. Anal. Appl., 156, 535-557 (1991) · Zbl 0734.34060
[3] Apreutesei, N. C., Second order differential equations on half-line associated with monotone operators, J. Math. Anal. Appl., 223, 472-493 (1998) · Zbl 0920.34025
[4] Apreutesei, N. C., Existence and asymptotic behavior for a class of second order difference equations, J. Difference Equations Appl., 9, 751-763 (2003) · Zbl 1086.39020
[5] N.C. Apreutesei, Some second order difference equations in Hilbert spaces, Comm. Appl. Anal., to appear.; N.C. Apreutesei, Some second order difference equations in Hilbert spaces, Comm. Appl. Anal., to appear. · Zbl 1188.39003
[6] Barbu, V., Sur un problème aux limites pour une classe d’équations différentielles nonlinéaires abstraites du deuxième ordre en t, C.R. Acad. Sci. Paris, 274, 459-462 (1972) · Zbl 0237.34095
[7] Barbu, V., A class of boundary problems for second order abstract differential equations, J. Fac. Sci. Univ. Tokyo Sec. 1, 19, 295-319 (1972) · Zbl 0256.47052
[8] Barbu, V., Nonlinear Semigroups and Differential Equations in Banach Spaces (1976), Noordhoff: Noordhoff Leyden · Zbl 0328.47035
[9] Bona, J. L.; Li, J., Stabilizing monetary injection policies, J. Econ. Theory, 98, 127-157 (2001) · Zbl 1028.91544
[10] Brézis, H., Équations d’évolution du second ordre associées à des opérateurs monotones, Israel J. Math., 12, 51-60 (1972) · Zbl 0248.47026
[11] Bruck, R. E., Periodic forcing of solutions of a boundary value problem for a second order differential equation in Hilbert space, J. Math. Anal. Appl., 76, 159-173 (1980) · Zbl 0437.34053
[12] Mitidieri, E.; Morosanu, G., Asymptotic behaviour of the solutions of second order difference equations associated to monotone operators, Numer. Funct. Anal. Optim., 8, 419-434 (1986-1987) · Zbl 0628.39004
[13] Morosanu, G., Second order difference equations of monotone type, Numer. Funct. Anal. Optim., 1, 441-450 (1979) · Zbl 0441.39005
[14] E. Poffald, S. Reich, A quasi-autonomous second-order differential inclusion, in: Non-Linear Analysis, North-Holland, Amsterdam, 1985, pp. 387-392.; E. Poffald, S. Reich, A quasi-autonomous second-order differential inclusion, in: Non-Linear Analysis, North-Holland, Amsterdam, 1985, pp. 387-392. · Zbl 0568.34049
[15] Poffald, E.; Reich, S., An incomplete Cauchy problem, J. Math. Anal. Appl., 113, 514-543 (1986) · Zbl 0599.34078
[16] E. Poffald, S. Reich, A difference inclusion, in: Nonlinear Semigroups, Partial Differential Equations and Attractors, Lecture Notes in Mathematics, Vol. 1394, Springer, Berlin, 1989, pp. 122-130.; E. Poffald, S. Reich, A difference inclusion, in: Nonlinear Semigroups, Partial Differential Equations and Attractors, Lecture Notes in Mathematics, Vol. 1394, Springer, Berlin, 1989, pp. 122-130. · Zbl 0681.39003
[17] Reich, S.; Shafrir, I., An existence theorem for a difference inclusion in general Banach spaces, J. Math. Anal. Appl., 160, 406-412 (1991) · Zbl 0813.47041
[18] Véron, L., Problèmes d’évolution du second ordre associés à des opérateurs monotones, C. R. Acad. Sci. Paris, 278, 1099-1101 (1974) · Zbl 0278.34059
[19] Véron, L., Équations non-linéaires avec conditions aux limites du type Sturm-Liouville, Anal. Stiint. Univ. Iasi Sec. 1 Math., 24, 277-287 (1978) · Zbl 0399.34018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.