×

Existence and asymptotic behavior for a class of second order difference equations. (English) Zbl 1086.39020

A discrete version of the boundary value problem \[ \begin{cases} u''(t) \in Au(t) \text{ a.e. } t\in(0,\infty) \\ u(0)=a,\;\sup_{t\geq0}\|u(t)\|<\infty \end{cases} \] is studied. Here \(A\) is a maximal monotone (possibly multivalued) operator in a Hilbert space \(H\) and \(a\) belongs to the domain \(D(A)\) of \(A.\)
The proposed version of the above problem is \[ \begin{cases} u_{n+1}-(1+\theta_n) u_n+\theta_n u_{n-1}\in c_n Au_{n},\;n\geq1\\ u_0=a,\;\|u_{n}\|\leq c,\;(\forall) n\geq1, \end{cases} \] where \(a\in H,\) \(c>0,\) \(c_n>0,\) \(\theta_n\geq1,\) \((\forall)n\geq1,\) \((\theta_n)\) nonincreasing sequence.
It is shown that, if \(A:D(A) \subseteq H\rightarrow H\) is a maximal monotone operator in \(H,\) with \(A^{-1}0\neq\Phi,\) then the above difference scheme has a unique solution \((u_n) \subset D(A).\)
The asymptotic behavior is also studied. In the subdifferential case, if \(\sum_{n=1}^{\infty} c_n/\theta_n=\infty,\) then the weak convergence of the solution to an element \(u\in A^{-1}0\) is proved. If \(A\) is univoque, maximally monotone and strongly monotone, then the convergence of the solution is strong. If \((I+A)^{-1}\) is a compact operator and \(\sum_{n=1}^{\infty}c_n^2/(1+\theta_n)^2=\infty,\) then the solution is also strongly convergent to an element \(u\in A^{-1}0.\)
The case \(\theta_n\equiv1\) was treated in some papers due to E. Mitidieri and G. Morosanu.

MSC:

39A12 Discrete version of topics in analysis
39A11 Stability of difference equations (MSC2000)
47H05 Monotone operators and generalizations
Full Text: DOI

References:

[1] Aftabizadeh A. R. Pavel N. H. Boundary value problems for second order differential equations and a convex problem of Bolza Diff. Integral Eqns. 2 1989 495 509 · Zbl 0723.34045
[2] Aftabizadeh A. R. Pavel N. H. Nonlinear boundary value problems for some ordinary and partial differential equations associated with monotone operators J. Math. Anal. Appl. 156 1991 535 557 · Zbl 0734.34060
[3] Apreutesei N. C. Second-order differential equations on half-line associated with monotone operators J. Math. Anal. Appl. 223 1998 472 493 · Zbl 0920.34025
[4] Apreutesei N. C. On a class of second order evolution equations in Hilbert spaces Anal. Stiint. Univ. Iasi, Sect. 1 Math. 44 1998 455 470 · Zbl 1009.34054
[5] Barbu V. Sur un probleme aux limites pour une classe d’equations differentielles nonlineaires abstraites du deuxieme ordre en t C.R. Acad. Sci. Paris 274 1972 459 462
[6] Barbu V. A class of boundary problems for second order abstract differential equations J. Fac. Sci. Univ. Tokyo, Sect 1 19 1972 295 319 · Zbl 0256.47052
[7] Barbu V. Nonlinear Semigroups and Differential Equations in Banach Spaces Noordhoff Leyden 1976
[8] Brezis H. Equations d’evolution du second ordre associees a des operateurs monotones Isr. J. Math. 12 1972 51 60
[9] Brezis H. Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert North-Holland Amsterdam 1973
[10] Mitidieri E. Morosanu G. Asymptotic behaviour of the solutions of second order difference equations associated to monotone operators Numerical Funct. Anal. Optim. 8 1986–1987 419 434 · Zbl 0628.39004
[11] Morosanu G. Second order difference equations of monotone type Numerical Funct. Anal. Optim. 1 1979 441 450 · Zbl 0441.39005
[12] Morosanu G. Nonlinear Evolution Equations and Applications Editura Academiei Romane (and D. Reidel Publishing Company) Bucuresti 1988
[13] Veron L. Problemes d’evolution du second ordre associes a des operateurs monotones C.R. Acad. Sci. Paris 278 1974 1099 1101
[14] Veron L. Equations non-lineaires avec conditions aux limites du type Sturm-Liouville Anal. Stiint. Univ. Iasi, Sect. 1 Math. 24 1978 277 287
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.