×

Generalized mixed variational principles and solutions of ill-conditioned problems in computational mechanics. II: Shear locking. (English) Zbl 1055.74563

Summary: Although the finite element method (FEM) has been extensively applied to various areas of engineering, ill-conditioned problems occurring in many situations are still thorny to deal with. This study attempts to provide a high-performing and simple approach to the solutions of ill-conditioned problems. The theoretical foundation are the parametrized variational principles, called the generalized mixed variational principles (GMVPs) initiated by Rong in 1981. GMVPs can solve many kinds of ill-conditioned problems in computational mechanics. Among them, four cases are investigated in detail: the volumetric locking, the shear locking, the inhomogeneousness and the membrane locking problems, composing four parts of the study, Part I–Part IV, respectively [for Part I see the authors, ibid. 191, No. 3–5, 407–422 (2001; Zbl 1054.74737)]. This paper is Part II, wherein a GMVP (specially suited to Reissner plate theory and Timoshenko beam theory) is constructed, providing a mathematical foundation for establishing FEM formulations which can automatically unlock the shear locking and produce no spurious zero-energy modes.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74G65 Energy minimization in equilibrium problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74K20 Plates

Citations:

Zbl 1054.74737
Full Text: DOI

References:

[1] Rong, T. Y., A variational principle with split modulus in elasticity, J. Southwest Jiaotong Univ., 1, 48-56 (1981), Chengdu, China (in Chinese)
[2] T.Y. Rong, A variational principle with split stiffness in the mechanics of thin elastic shells, plates and bar systems, Collected Papers from 1981 Symposium on Scientific Research, Edited by the Department of Scientific Affairs, Southwest Jiaotong Univ., Chengdu, China, 1981, pp. 213-215. Also presented at the First National Conference on Computing in Civil Engineering, Kunming, China, December, 1981 (in Chinese); T.Y. Rong, A variational principle with split stiffness in the mechanics of thin elastic shells, plates and bar systems, Collected Papers from 1981 Symposium on Scientific Research, Edited by the Department of Scientific Affairs, Southwest Jiaotong Univ., Chengdu, China, 1981, pp. 213-215. Also presented at the First National Conference on Computing in Civil Engineering, Kunming, China, December, 1981 (in Chinese)
[3] T.Y. Rong, Generalized mixed variational principles and finite element methods in elasticity, in: Proceedings of the First Conference on Computational Mechanics in Sichuan Province, vol. 1, Chongqing, China, 1983, pp. 1-13 (in Chinese); T.Y. Rong, Generalized mixed variational principles and finite element methods in elasticity, in: Proceedings of the First Conference on Computational Mechanics in Sichuan Province, vol. 1, Chongqing, China, 1983, pp. 1-13 (in Chinese)
[4] Rong, T. Y., Generalized mixed variational principles and new FEM models in solid mechanics, Int. J. Solids Struct., 24, 1131-1140 (1988) · Zbl 0686.73050
[5] Rong, T. Y.; Lu, A. Q., Parametrized Lagrange multiplier method and proof of full independence of the three-field variables in Hu-Washizu variational principle and others, J. Southwest Jiaotong Univ., 1, 84-92 (1997), Chengdu, China (in Chinese)
[6] Rong, T. Y.; Lu, A. Q., Parametrized Lagrange multiplier method and construction of generalized mixed variational principles for computational mechanics, Comput. Methods Appl. Mech. Engrg., 164, 287-296 (1998) · Zbl 0963.74080
[7] Rong, T. Y.; Lu, A. Q., Generalized mixed variational principles and solutions of ill-conditioned problems in computational mechanics, Part I: Volumetric locking, Comput. Methods Appl. Mech. Engrg., 191, 407-422 (2001) · Zbl 1054.74737
[8] Reissner, E., The effect of transverse deformation on the bending of elastic plates, J. Appl. Mech., 12, A68-A77 (1945) · Zbl 0063.06470
[9] Zienkiewicz, O. C.; Taylor, R. L.; Too, J. M., Reduced integration technique in general analysis of plates and shells, Int. J. Numer. Methods Engrg., 3, 275-290 (1971) · Zbl 0253.73048
[10] Hughes, T. J.R.; Taylor, R. L.; Kanoknukulchai, W., A simple and efficient finite element for plate bending, Int. J. Numer. Methods Engrg., 11, 1529-1543 (1977) · Zbl 0363.73067
[11] Hughes, T. J.R.; Cohen, M.; Haroun, M., Reduced and selective integration techniques in the finite element analysis of plates, Nucl. Engrg. Des., 46, 203-222 (1978)
[12] Pugh, E. D.L.; Hinton, E.; Zienkiewicz, O. C., A study of quadrilateral plate bending elements with ‘reduced’ integration, Int. J. Numer. Methods Engrg., 12, 1059-1079 (1978) · Zbl 0377.73065
[13] Prathap, G.; Bhashyam, G. R., Reduced integration and the shear-flexible beam element, Int. J. Numer. Methods Engrg., 18, 195-210 (1982) · Zbl 0473.73084
[14] Choi, C. K.; Kim, S. H., Reduced integration, non-conforming modes and their coupling in thin plate elements, Comput. Struct., 29, 57-62 (1988)
[15] Belytschko, T.; Tsay, C. S.; Liu, W. K., A stabilization matrix for the bilinear Mindlin plate element, Comput. Methods Appl. Mech. Engrg., 29, 313-327 (1981) · Zbl 0474.73091
[16] Wang, X.-J.; Belytschko, T., A study of stabilization and projection in the 4-node Mindlin plate element, Int. J. Numer. Methods Engrg., 28, 2223-2238 (1989) · Zbl 0717.73068
[17] Belytschko, T.; Bindeman, L. P., Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems, Comput. Methods Appl. Mech. Engrg., 88, 311-340 (1991) · Zbl 0742.73019
[18] Reese, S.; Wriggers, P., A stabilization technique to avoid hourglassing in finite elasticity, Int. J. Numer. Methods Engrg., 48, 79-109 (2000) · Zbl 0983.74070
[19] Hughes, T. J.R.; Tezduyar, T. E., Finite elements based upon Mindlin plate theory with particular reference to the four-node bilinear isoparametric element, J. Appl. Mech., 48, 587-596 (1981) · Zbl 0459.73069
[20] Simo, J. C.; hughes, T. J.R., On the Variational foundations of assumed strain methods, J. Appl. Mech., 53, 51-54 (1986) · Zbl 0592.73019
[21] Stolarski, H. K.; Chiang, M. Y.M., Assumed strain formulation for triangular \(C^0\) plate elements based on a weak form of the Kirchhoff constraints, Int. J. Numer. Methods Engrg., 28, 2323-2338 (1989) · Zbl 0717.73067
[22] Simo, J. C.; Rifai, M. S., A class of mixed assumed strain methods and the method of incompatible modes, Int. J. Numer. Methods Engrg., 29, 1595-1638 (1990) · Zbl 0724.73222
[23] Shi, G.-G.; Voyiadjis, G. Z., Efficient and accurate four-node quadrilateral \(C^0\) plate bending element based on assumed strain fields, Int. J. Numer. Methods Engrg., 32, 1041-1055 (1991)
[24] Zhu, Y. Y.; Cescotto, S., Unified and mixed formulation of the 8-node hexahedral elements by assumed strain method, Comput. Methods Appl. Mech. Engrg., 129, 177-209 (1996) · Zbl 0860.73075
[25] Corelk, J.; Wriggers, P., Improved enhanced strain four-node element with Taylor expansion of the shape functions, Int. J. Numer. Methods Engrg., 40, 407-421 (1997)
[26] Kasper, E. P.; Taylor, R. L., A mixed-enhanced strain method. Part I: Geometrically linear problems, Comput. Struct., 75, 237-250 (2000)
[27] Kasper, E. P.; Taylor, R. L., A mixed enhanced-strain method. Part II: Geometrically nonlinear problems, Comput. Struct., 75, 251-260 (2000)
[28] Pinsky, P. M.; Jasti, R. V., A mixed finite element formulation for Reissner-Mindlin plates based on the use of bubble functions, Int. J. Numer. Methods Engrg., 28, 1677-1702 (1989) · Zbl 0717.73069
[29] Franca, L. P.; Farhat, C., On the limitations of bubble functions, Comput. Methods Appl. Mech. Engrg., 117, 225-230 (1994) · Zbl 0847.76033
[30] Franca, L. P.; Farhat, C., Bubble functions prompt unusual stabilized finite element methods, Comput. Methods Appl. Mech. Engrg., 123, 299-308 (1995) · Zbl 1067.76567
[31] Franca, L. P.; Russo, A., Unlocking with residual-free bubbles, Comput. Methods Appl. Mech. Engrg., 142, 361-364 (1997) · Zbl 0890.73064
[32] Pian, T. H.H.; Tong, P., Basis of finite element methods for solid continua, Int. J. Numer. Methods Engrg., 1, 3-28 (1969) · Zbl 0252.73052
[33] Malkus, D. S.; Hughes, T. J.R., Mixed finite element methods-Reduced and selective integration techniques: A unification of concepts, Comput. Methods Appl. Mech. Engrg., 15, 63-81 (1978) · Zbl 0381.73075
[34] Lee, S. W.; Wong, S. C., Mixed formulation finite elements for Mindlin theory plate bending, Int. J. Numer. Methods Engrg., 18, 1297-1311 (1982) · Zbl 0486.73069
[35] Bathe, K.-J.; Dvorkin, E. N., A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation, Int. J. Numer. Methods Engrg., 21, 367-383 (1985) · Zbl 0551.73072
[36] Lee, S. W.; Rhiu, J. J., A new efficient approach to the formulation of mixed finite models for structural analysis, Int. J. Numer. Methods Engrg., 21, 1629-1641 (1986) · Zbl 0596.73046
[37] Belytschko, T.; Liu, W. K.; Ong, J. S.-J, Mixed variational principles and stabilization of spurious modes in the 9-node element, Comput. Methods Appl. Mech. Engrg., 62, 275-292 (1987) · Zbl 0614.73072
[38] Loula, A. F.D.; Hughes, T. J.R.; Franca, L. P.; Miranda, I., Mixed Petrov-Galerkin formulations of the Timoshenco beam problem, Comput. Methods Appl. Mech. Engrg., 63, 133-154 (1987) · Zbl 0607.73076
[39] Saleeb, A. F.; Chang, T. Y., An efficient quadrilateral element for plate bending analysis, Int. J. Numer. Methods Engrg., 24, 1123-1155 (1987) · Zbl 0613.73065
[40] Saleeb, A. F.; Chang, T. Y.; Graf, W., A quadrilateral shell element using a mixed formulation, Comput. Struct., 26, 787-803 (1987) · Zbl 0614.73075
[41] Hughes, T. J.R.; Franca, L. P., A mixed finite element formulation for Reissner-Mindlin plate theory: Uniform convergence of all higher-order spaces, Comput. Methods Appl. Mech. Engrg., 67, 223-240 (1988) · Zbl 0611.73077
[42] Zienkiewicz, O. C.; Lefebvre, D., A robust triangular plate bending element of Reissner-Mindlin type, Int. J. Numer. Methods Engrg., 26, 1169-1184 (1988) · Zbl 0634.73064
[43] Gellert, M., A new method for derivation of locking-free plate finite elements via mixed hybrid formulation, Int. J. Numer. Methods Engrg., 26, 1185-1200 (1988) · Zbl 0634.73065
[44] Brezzi, F.; Bathe, K. J.; Fortin, M., Mixed-interpolated elements for Reissner-Mindlin plates, Int. J. Numer. Methods Engrg., 28, 1787-1801 (1989) · Zbl 0705.73238
[45] Weissman, S. L.; Taylor, R. L., Resultant fields for mixed plate bending elements, Comput. Methods Appl. Mech. Engrg., 79, 321-355 (1990) · Zbl 0743.73031
[46] Pian, T. H.H., State of the art development of hybrid/mixed finite element method, Comput. Mech., 21, 5-20 (1995) · Zbl 0875.73310
[47] Piltner, R.; Taylor, R. L., A quadrilateral mixed finite element with two enhanced strain modes, Int. J. Numer. Methods Engrg., 38, 1783-1808 (1995) · Zbl 0824.73073
[48] Ayad, R.; Dhatt, G.; Batoz, J. L., A new hybrid-mixed variational approach for Reissner-Mindlin plates. The MiSP model, Int. J. Numer. Methods Engrg., 42, 1149-1179 (1998) · Zbl 0912.73051
[49] Lovadina, C., Analysis of a mixed finite element method for the Reissner-Mindlin plate problems, Comput. Methods Appl. Mech. Engrg., 163, 71-85 (1998) · Zbl 0962.74065
[50] Bathe, K.-J., The inf-sup condition and its evaluation for mixed element methods, Comput. Struct., 79, 243-252 (2001)
[51] Striklin, J. A.; Haisler, W.; Tisdale, P.; Gunderson, R., A rapidly converging triangular plate element, AIAA J., 7, 180-181 (1969) · Zbl 0175.22703
[52] G. Dhatt, Numerical analysis of thin shells by curved triangular elements based on discrete Kirchhoff hypothesis, in: Proceedings of the ASCE Symposium on applications of FEM in Civil Engineering, Vanderbilt University, Nashville, TN, 1969, pp. 13-14; G. Dhatt, Numerical analysis of thin shells by curved triangular elements based on discrete Kirchhoff hypothesis, in: Proceedings of the ASCE Symposium on applications of FEM in Civil Engineering, Vanderbilt University, Nashville, TN, 1969, pp. 13-14
[53] Batos, J. L.; Bathe, K. J.; Ho, L. W., A study of three-node triangular plate bending elements, Int. J. Numer. Methods Engrg., 15, 1771-1812 (1980) · Zbl 0463.73071
[54] Batoz, J. L.; Lardeur, P., A discrete shear triangular nine d.o.f. element for the analysis of thick to very thin plates, Int. J. Numer. Methods Engrg., 28, 553-560 (1989) · Zbl 0675.73042
[55] Zienkiewicz, O. C.; Taylor, R. L.; Papadopoulos, P.; Oñate, E., Plate bending elements with discrete constraints: New triangular elements, Comput. Struct., 35, 505-522 (1990) · Zbl 0729.73227
[56] Katili, I., A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-Part I: An extended DKT element for thick-plate bending analysis, Int. J. Numer. Methods Engrg., 36, 1859-1883 (1993) · Zbl 0775.73263
[57] Katili, I., A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-Part II: An extended DKQ element for thick-plate bending analysis, Int. J. Numer. Methods Engrg., 36, 1885-1908 (1993) · Zbl 0775.73264
[58] Sydenstricker, R. M.; Landau, L., A study of some triangular discrete Reissner-Mindlin plate and shell elements, Comput. Struct., 78, 21-33 (2000)
[59] Fraeijs De Veubeke, B., Displacement and equilibrium models in the finite element method, (Zienkiewicz, O. C.; Holister, G. S., Stress Analysis (1965), John Wiley & Sons: John Wiley & Sons New York) · Zbl 0359.76021
[60] Rong, T. Y., Generalized mixed variational principles in elasticity and the finite element method, Acta Mechanica Sinica, 2, 153-164 (1988), in Chinese
[61] Felippa, C. A., Parametrized multifield variational principles in elasticity. I. Mixed functionals, Commun. Appl. Numer. Methods, 5, 79-88 (1989) · Zbl 0659.73015
[62] Felippa, C. A., A survey of parametrized variational principles and applications to computational mechanics, Comput. Methods Appl. Mech. Engrg., 113, 109-139 (1994) · Zbl 0848.73063
[63] T.Y. Rong and A.Q. Lu, Parametrized variational principles for Reissner plate and automatic removal of locking, Technical Report no. SWJ-008/97, Southwest Jiaotong University, 1997, Chengdu, China (in Chinese); T.Y. Rong and A.Q. Lu, Parametrized variational principles for Reissner plate and automatic removal of locking, Technical Report no. SWJ-008/97, Southwest Jiaotong University, 1997, Chengdu, China (in Chinese)
[64] Hughes, T. J.R., The Finite Element Method (1987), Canada General Publishing company, Printice-Hall: Canada General Publishing company, Printice-Hall Englewood Cliffs, NJ · Zbl 0634.73056
[65] Zienkiewicz, O. C.; Taylor, R. L., (The Finite Element Method in Engineering Science, vol. 1 (1989), McGraw-Hill: McGraw-Hill London)
[66] Salerno, V. L.; Goldberg, M. A., Effect of shear deformations on the bending of rectangular plates, J. Appl. Mech., Trans. ASME, 5, 54-58 (March 1960) · Zbl 0097.18605
[67] Morley, L. S.D., Skew Plates and Structures (1963), Pergamon: Pergamon Oxford · Zbl 0124.17704
[68] Wang, C. M.; Reddy, J. N.; Lee, K. H., Sear Deformable Beams and Plates (2000), Elsevier: Elsevier Amsterdam · Zbl 0963.74002
[69] Timoshenko, S.; Woinowsky-Krieger, S., Theory of Plates and Shells (1959), McGraw-Hill: McGraw-Hill New York · Zbl 0114.40801
[70] Robinson, J.; Haggenmacher, G. W., LORA-An accurate four node stress plate bending element, Int. J. Numer. Methods Engrg., 14, 296-306 (1979) · Zbl 0394.73001
[71] Tessler, A.; Dong, S. B., On a hierarchy of conforming Timoshenko beam elements, Comput. Struct., 14, 335-344 (1981)
[72] Rakowski, J., The interpretation of the shear locking in beam elements, Comput. Struct., 37, 769-776 (1990)
[73] Reddy, J. N., On locking-free shear deformable beam finite element, Comput. Methods Appl. Mech. Engrg., 149, 113-132 (1997) · Zbl 0918.73131
[74] Yunhua, Luo, Explanation and elimination of shear locking and membrane locking with field consistence approach, Comput. Methods Appl. Mech. Engrg., 162, 249-269 (1998) · Zbl 0949.74069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.