×

Unified and mixed formulation of the 8-node hexahedral elements by assumed strain method. (English) Zbl 0860.73075

A class of ‘assumed strain’ mixed finite element methods based on the Hu-Washizu variational principle is presented. Special care is taken to avoid hourglass modes and shear locking as well as volumetric locking. A unified framework for the 8-node hexahedral solid and thermal as well as thermomechanical coupling elements with uniform reduced integration and selective numerical integration schemes is developed. The approach is simply implemented by a small change of the standard technique and is applicable to arbitrary nonlinear constitutive laws including isotropic and anisotropic material behaviors.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
Full Text: DOI

References:

[1] Belytschko, T.; Engelmann, E., On flexurally superconvergent four-node quadrilaterals, Comput. Struct., 25, 909-918 (1987) · Zbl 0607.73073
[2] Flanagan, D. P.; Belytschko, T., A uniform strain hexahedron and quadrilateral with orthogonal hourglass control, Int. J. Numer. Methods Engrg., 17, 679-706 (1981) · Zbl 0478.73049
[3] Belytschko, T., An overview of semi-discretization and time integration procedures, (Belytschko, T.; Hughes, T. J.R., Computational Methods for Transient Analysis (1983), Elsevier: Elsevier Amsterdam), 1-63 · Zbl 0542.73106
[4] Belytschko, T., Correction of article by O.P. Flanagan and T. Belytschko, Int. J. Numer. Mech. Engrg., 19, 467-468 (1983) · Zbl 0502.73062
[5] Belytschko, T.; Ong, J.; Liu, W. K.; Kennedy, J. M., Hourglass control in linear and nonlinear problems, Comput. Methods Appl. Mech. Engrg., 43, 251-276 (1984) · Zbl 0522.73063
[6] Belytschko, T.; Bachrach, W. E., Efficient implementation of quadrilaterals with high coarse-mesh accuracy, Comput. Methods Appl. Mech. Engrg., 54, 279-301 (1986) · Zbl 0579.73075
[7] Liu, W. K.; Ong, J. S.J.; Uras, R. A., Finite element stabilization matrices—a unification approach, Comput. Methods Appl. Mech. Engrg., 53, 13-46 (1985) · Zbl 0553.73065
[8] Liu, W. K.; Belytschko, T.; Ong, J. S.J.; Law, S. F., Use of stabilization matrices in non-linear analysis, Engrg. Comput., 2, 47-55 (1985)
[9] Koh, B. C.; Kikuchi, N., New improved hourglass control for bilinear and trilinear elements in anisotropic linear elasticity, Comput. Methods Appl. Mech. Engrg., 65, 1-46 (1987) · Zbl 0621.73104
[10] Liu, W. K.; Chang, H.; Chen, J. S.; Belytschko, T., Arbitrary Lagragian-Eulerian Petrov-Galerkin finite elements for nonlinear continue, Comput. Methods Appl. Mech. Engrg., 68, 59-310 (1988) · Zbl 0626.73076
[11] Belytschko, T.; Bindeman, L. P., Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems, Comput. Methods Appl. Mech. Engrg., 88, 311-340 (1991) · Zbl 0742.73019
[12] Simo, J. C.; Taylor, R. L.; Pister, K. S., Variational and projection methods for the volume constraint in finite deformation elasto-plasticity, Comput. Methods Appl. Mech. Engrg., 51, 177-208 (1985) · Zbl 0554.73036
[13] Simo, J. C.; Hughes, T. J.R., On the variation foundations of assumed strain methods, J. Appl. Mech., 53, 51-54 (1986) · Zbl 0592.73019
[14] Simo, J. C.; Rifai, M. S., A class of mixed assumed strain method and the method of incompatible modes, Int. J. Numer. Methods Engrg., 29, 1595-1638 (1990) · Zbl 0724.73222
[15] Simo, J. C.; Armero, F., Geometrically nonlinear enhanced strain mixed methods and the method of incompatible modes, Int. J. Numer. Methods Engrg., 33, 1413-1449 (1992) · Zbl 0768.73082
[16] Fish, J.; Belytschko, T., Elements with embedded localization zones for large deformation problems, Comput. Struct., 30, 247-256 (1988) · Zbl 0667.73033
[17] Zhu, Y. Y., Contribution to the local approach of fracture in solid dynamics, (Doctoral thesis (December, 1992), Liège University)
[18] Belytschko, T.; Lasry, A. D., A frctal patch test, Int. J. Numer. Methods Engrg., 26, 2199-2210 (1988) · Zbl 0661.73054
[19] Pian, T. H.H.; Chen, D., On the suppression of zero energy deformation modes, Int. J. Numer. Methods Engrg., 19, 1741-1752 (1983) · Zbl 0537.73059
[20] Pian, T. H.H.; Sumihara, K., Rational approach for assumed stress finite elements, Int. J. Numer. Methods Engrg., 20, 1685-1695 (1984) · Zbl 0544.73095
[21] Weissman, S. L.; Taylor, R. L., Four-node axisymmetric element based upon the Hellinger-Reissner functional, Comput. Methods Appl. Mech. Engrg., 85, 39-55 (1991) · Zbl 0825.73683
[22] Nagtegaal, J. C.; Parks, D. M.; Rice, J. R., On numerically accurate finite element solutions in the fully plastic range, Comput. Methods Appl. Mech. Engrg., 4, 153-177 (1974) · Zbl 0284.73048
[23] Malkus, D. S.; Hughes, T. J.R., Mixed finite element methods—reduce and selective integration techniques: A unification of concepts, Comput. Methods Appl. Mech. Engrg., 15, 63-81 (1978) · Zbl 0381.73075
[24] Hughes, T. J.R., Recent developments in computer methods for structural analysis, Nucl. Engrg. Des., 57, 427-439 (1980)
[25] Hughes, T. J.R., Generalization of selective integration procedures to anisotropic and nonlinear media, Int. J. Numer. Methods Engrg., 15, 1413-1418 (1980) · Zbl 0437.73053
[26] Liu, W. K.; Belytschko, T.; Chen, J. S., Nonlinear versions of flexurally superconvergent elements, Comput. Methods Appl. Mech. Engrg., 71, 241-258 (1988) · Zbl 0679.73028
[27] Matejovic, P., Quadrilateral with high coarse-mesh accuracy for solid mechanics in axisymmetric geometry, Comput. Methods Appl. Mech. Engrg., 88, 241-258 (1991) · Zbl 0745.73016
[28] Jetteur, P.; Cescotto, S., A mixed finite element for the analysis of large inelastic strains, Int. J. Numer. Methods Engrg., 31, 229-239 (1991) · Zbl 0825.73786
[29] Weissman, S. L.; Taylor, R. L., Treatment of internal constraints mixed finite element methods: Unification of concepts, Int. J. Numer. Methods Engrg., 33, 131-141 (1992)
[30] Weissman, S. L.; Taylor, R. L., A unified approach to mixed finite element methods: Application to in-plane problems, Comput. Methods Appl. Mech. Engrg., 98, 127-151 (1992) · Zbl 0764.73091
[31] Cescotto, S.; Zhu, Y. Y., Large strain dynamic analysis using solid and contact finite elements based on a mixed formulation, J. Mater. Process. Technol., 45, 657-663 (1994)
[32] Li, K. P.; Cescotto, S.; Jetteur, P., An element with hourglass control for the large deformation analysis in three dimensions, (Proc. 3rd Int. Conf. on Computational Plasticity Fundamental and Applications. Proc. 3rd Int. Conf. on Computational Plasticity Fundamental and Applications, Barcelona (6-10 April, 1992), Pineridge Press: Pineridge Press Swansea), 2021-2032
[33] Jacquotte, O. P.; Oden, J. T., Analysis of hourglass instabilities and control in underintegrated finite element methods, Comput. Methods Appl. Mech. Engrg., 44, 339-363 (1984) · Zbl 0543.73104
[34] Belytschko, T.; Kennedy, J. M., Computer models for subassembly simulation, Nucl. Engrg. Des., 49, 17-38 (1978)
[35] Goudreau, G. L.; Hallquist, J. O., Recent developments in large-scale finite element Lagrangian hydrocode technology, Comput. Methods Appl. Mech. Engrg., 33, 725-757 (1982) · Zbl 0493.73072
[36] Matejovic, P.; Adamik, V., A diffusion equation with hourglass control in an axisymmetric geometry, Comput. Methods Appl. Mech. Engrg., 76, 135-156 (1989) · Zbl 0687.76087
[37] Kosloff, D.; Frazier, G. A., Treatment of hourglass patterns in low order finite element codes, Int. J. Numer. Anal. Methods Geol., 2, 57-72 (1978)
[38] Matejovic, P.; Adamik, V., A one-point integration quadrilateral with hourglass control in axisymmetric geometry, Comput. Methods Appl. Mech. Engrg., 70, 301-320 (1988) · Zbl 0658.73051
[39] Liu, W. K.; Belytschko, T., Efficient linear and nonlinear heat conduction with a quadrilateral element, Int. J. Numer. Methods Engrg., 20, 931-948 (1984) · Zbl 0542.65067
[40] Bachrach, W. E.; Liu, W. K.; Uras, R. A., A consolidation of various approaches in developing naturally based quadrilaterals, Comput. Methods Appl. Mech. Engrg., 55, 43-62 (1986) · Zbl 0571.73077
[41] Bachrach, W. E.; Belytschko, T., Axisymmetric elements with high coarse-mesh accuracy, Comput. Struct., 23, 323-331 (1986) · Zbl 0583.73064
[42] Charlier, R., Approche unifiée de quelques problèmes non linéaires de mécanique des milieux continus par la méthode des éléments finis, (Thèse de Doctorat (1987), MSM., Université de Liège)
[43] Argyris, J. H.; Doltsinis, I. St., On the natural formulation and analysis of large deformation coupled thermomechanical problems, Comput. Methods Appl. Mech. Engrg., 25, 195-253 (1981) · Zbl 0489.73126
[44] Argyris, J. H.; Doltsinis, I. St.; Pimenta, P. M.; Wustenberg, H., Thermomechanical response of solids at high strains—natural approach, Comput. Methods Appl. Mech. Engrg., 32, 3-57 (1982) · Zbl 0505.73062
[45] Argyris, J. H.; Doltsinis, I. St., On the large strain inelastic analysis in natural formulation, Comput. Methods Appl. Mech. Engrg., 21, 96-126 (1980) · Zbl 0437.73067
[46] Doltsinis, I. St.; Luginsland, J.; Nolting, S., Some developments in numerical simulation of metal forming processes, Engrg. Comput., 4, 266-280 (1987)
[47] Zhu, Y. Y.; Cescotto, S., Transient thermal and thermomechanical analysis by mixed FEM, Comput. Struct., 53, 275-304 (1994) · Zbl 0900.73743
[48] Cescotto, S.; Habraken, A. M.; Radu, J. P.; Charlier, R., Some recent developments in computer simulation of metalforming process, (Proc. 9th Int. Conf. on Computational Methods in Mechanics. Proc. 9th Int. Conf. on Computational Methods in Mechanics, Krakow, 16-20 May, Poland (1989))
[49] Simo, J. C.; Miehe, C., Associative coupled thermoplasticity at finite strain: Formulation, numerical analysis and implementation, Comput. Methods Appl. Mech. Engrg., 98, 41-401 (1992) · Zbl 0764.73088
[50] Zhu, Y. Y.; Cescotto, S., Unified and mixed formulation of the 4-nde quadrilateral elements by assumed strain method, Int. J. Numer. Methods Engrg., 30, 685-716 (1995) · Zbl 0823.73074
[51] Bathe, K. J.; Khoshgoftaar, M. R., Finite element formulation and solution of nonlinear heat transfer, Nucl. Engrg. Des., 51, 389-401 (1979)
[52] Zhu, Y. Y.; Cescotto, S., A fully coupled elasto-visco-plastic damage theory for anisotropic materials, Int. J. Solids Struct, 32, 1607-1641 (1995) · Zbl 0874.73057
[53] Kobayashi, S.; Oh, S. I.; Altan, T., Metal Forming and the Finite Element Method (1989), Oxford University Press: Oxford University Press Oxford
[54] Rebelo, N.; Kobayashi, S., A coupled analysis of viscoplastic deformation and heat transfer—II applications, Int. J. Mech. Sci., 22, 707-718 (1980) · Zbl 0455.73005
[55] Yang, D. Y.; Chung, W. J.; Shim, H. B., Rigid-plastic finite element analysis of sheet metal forming processes with initial guess generation, Int. J. Mech. Sci., 32, 687-708 (1990)
[56] Rebelo, N.; Nagtegaal, J. C.; Hibbit, H. D., Finite element analysis of sheet forming processes, Int. J. Numer. Methods Engrg., 30, 1739-1758 (1990)
[57] Guo, Y. Q.; Batoz, J. L.; Detraux, J. M.; Duroux, P., Finite element procedures for strain estimations of sheet metal forming parts, Int. J. Numer. Methods Engrg., 30, 1385-1401 (1990) · Zbl 0716.73087
[58] Habraken, A. M.; Radu, J. P.; Carlier, R., Numerical approach of contact with friction between two bodies in large deformations, (Proc. of Contact Mechanics International Symposium. Proc. of Contact Mechanics International Symposium, Lausanne (1992))
[59] Zhu, Y. Y.; Zacharia, T., A new one-point quadrature, quadrilateral shell element with drilling degrees of freedom, (Proc. 3rd US National Congress on Computational Mechanics. Proc. 3rd US National Congress on Computational Mechanics, Dallas, TX (12-14 June, 1995)), 274
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.