×

Nonlinear Kolmogorov equations in infinite dimensional spaces: the backward stochastic differential equations approach and applications to optimal control. (English) Zbl 1017.60076

Let \(X\) be a stochastic process with values in a Hilbert space \(H\), which solves some stochastic evolution equation driven by a cylindrical Brownian motion \(W\) in another Hilbert space \(\Theta\), and let \({\mathcal L}_t\) be the generator of the process \(X\). The authors of the present paper investigate the generalized backward Kolmogorov equation \[ \partial_t v(t,x)+{\mathcal L}_t[v(t,.)](x)= \psi(t, x,v(t, x), G(t,x)^*\nabla_x v(t,x)),\;(t,x)\in [0,T]\times H,\;u(T,x)= \varphi(x), \] where \(\psi: [0,T]\times H\times R\times\Theta\to R\) is a given function, and \(\nabla_x v(t,x)\) is the Gâteaux derivative of \(v\) w.r.t. \(x\). In view of applications to the control theory, the authors are interested in mild solutions of this equation. They prove existence and uniqueness by assuming existence and some growth condition on the first Gâteau derivatives of \(\varphi\) and \(\psi\). As the main ingredient in their approach they extend backward stochastic differential equations (BSDE) \[ dY_t= \psi(t, X_t, Y_t, Z_t)dt+ \langle Z_t,dW_t\rangle_\Theta,\;t\in [0,T],\quad Y_T= \varphi(X_T), \] to their framework [cf. E. Pardox and S. G. Peng, Syst. Control Lett. 14, No. 1, 55-61 (1990; Zbl 0692.93064), the first paper on finite-dimensional, nonlinear BSDE of the above form, and Y. Hu and S. Peng, Stochastic Anal. Appl. 9, No. 4, 445-459 (1991; Zbl 0736.60051), study of BSDEs in infinite dimension, but in another framework than that which is needed here], and they derive a Feynman-Kac type formula which relates the solution of the backward stochastic differential equation with the mild solution of the Kolmogorov equation. Finally, applications to stochastic control are presented; they illustrate the effectiveness of the authors’ results on nonlinear Kolmogorov equations.

MSC:

60H30 Applications of stochastic analysis (to PDEs, etc.)
35R15 PDEs on infinite-dimensional (e.g., function) spaces (= PDEs in infinitely many variables)
49L20 Dynamic programming in optimal control and differential games
93E20 Optimal stochastic control
Full Text: DOI

References:

[1] AMBROSETTI, A. and PRODI, G. (1995). A Primer of Nonlinear Analy sis. Cambridge Univ. Press. · Zbl 0818.47059
[2] BARBU, V. and DA PRATO, G. (1983). Hamilton-Jacobi Equations in Hilbert Spaces. Longman, Essex. · Zbl 0508.34001
[3] BONACCORSI, S. (1998). Some applications in Malliavin calculus. Ph.D. thesis, Dept. Mathematics, Univ. Trento.
[4] BONACCORSI, S. and FUHRMAN, M. (1999). Regularity results for infinite dimensional diffusions. A Malliavin calculus approach. Rend. Mat. Acc. Lincei 10 35-45. · Zbl 1007.60050
[5] CANNARSA, P. and DA PRATO, G. (1991). Second-order Hamilton-Jacobi equations in infinite dimensions. SIAM J. Control Optim. 29 474-492. · Zbl 0737.49020 · doi:10.1137/0329026
[6] CANNARSA, P. and DA PRATO, G. (1992). Direct solution of a second-order Hamilton-Jacobi equations in Hilbert spaces. In Stochastic Partial Differential Equations and Applications (G. Da Prato and L. Tubaro, eds.) 72-85. Longman, Essex. · Zbl 0805.49016
[7] CRANDALL, M. G., ISHII, H. and LIONS, P. L. (1992). User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 1-67. · Zbl 0755.35015 · doi:10.1090/S0273-0979-1992-00266-5
[8] CRANDALL, M. G., KOCAN, M. and ŚWI \?ECH, A. (1993/94). On partial sup-convolutions, a lemma of P. L. Lions and viscosity solutions in Hilbert spaces. Adv. Math. Sci. Appl. 3 (Special Issue) 1-15. · Zbl 0820.35036
[9] DA PRATO, G. and ZABCZy K, J. (1992). Stochastic equations in infinite dimensions. In Ency clopedia of Mathematics and Its Applications 44. Cambridge Univ. Press. · Zbl 0761.60052 · doi:10.1017/CBO9780511666223
[10] DA PRATO, G. and ZABCZy K, J. (1996). Ergodicity for Infinite-Dimensional Sy stems. Cambridge Univ. Press. · Zbl 0849.60052 · doi:10.1017/CBO9780511662829
[11] EL KAROUI, N. (1997). Backward stochastic differential equations a general introduction. In Backward Stochastic Differential Equations (N. El Karoui and L. Mazliak, eds.) 7-26. Longman, Essex. · Zbl 0886.60054
[12] FLEMING, W. H. and SONER, H. M. (1993). Controlled Markov Processes and Viscosity Solutions. Springer, New York. · Zbl 0773.60070
[13] FUHRMAN, M. (1996). Smoothing properties of transition semigroups in Hilbert spaces. NoDEA 3 445-464. · Zbl 0866.60050 · doi:10.1007/BF01193830
[14] FUHRMAN, M. and TESSITORE, G. (2001). The Bismut-Elworthy formula for Backward SDE’s and applications to nonlinear Kolmogorov equations and control in infinite dimensional spaces. Preprint, Dipartimento di Matematica Politecnico di Milano, 470/P 1-25. · Zbl 1013.60049 · doi:10.1080/104S1120290024856
[15] GOLDy S, B. and GOZZI, F. Second order Hamilton-Jacobi equations in Hilbert spaces and stochastic control: an approach via invariant measures. Unpublished manuscript.
[16] GOZZI, F. (1995). Regularity of solutions of second order Hamilton-Jacobi equations and application to a control problem. Comm. Partial Differential Equations 20 775-826. · Zbl 0842.49021 · doi:10.1080/03605309508821115
[17] GOZZI, F. (1996). Global regular solutions of second order Hamilton-Jacobi equations in Hilbert spaces with locally Lipschitz nonlinearities. J. Math. Anal. Appl. 198 399-443. · Zbl 0858.35129 · doi:10.1006/jmaa.1996.0090
[18] GOZZI, F., ROUY, E. and ŚWI \?ECH, A. (2000). Second order Hamilton-Jacobi equations in Hilbert spaces and stochastic boundary control. SIAM J. Control Optim. 38 400-430. · Zbl 0994.49019 · doi:10.1137/S0363012997324909
[19] GOZZI, F. and ŚWI \?ECH, A. (2000). Hamilton-Jacobi-Bellman equations for the optimal control of the Duncan-Mortensen-Zakai equation. J. Funct. Anal. 172 466-510. · Zbl 1047.93047 · doi:10.1006/jfan.2000.3562
[20] GRORUD, A. and PARDOUX, E. (1992). Intégrales Hilbertiennes anticipantes par rapport à un processus de Wiener cy lindrique et calcul stochastique associé. Appl. Math. Optim. 25 31-49. · Zbl 0754.60051 · doi:10.1007/BF01184155
[21] KOCAN, M. and ŚWI \?ECH, A. (1995). Second order unbounded parabolic equations in separated form. Studia Math. 115 291-310. · Zbl 0832.49017
[22] HENRY, D. (1981). Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math. 840. Springer, Berlin. · Zbl 0456.35001
[23] HU, Y. and PENG, S. (1991). Adapted solution of a backward semilinear stochastic evolution equation. Stochastic Anal. Appl. 9 445-459. · Zbl 0736.60051 · doi:10.1080/07362999108809250
[24] LEÓN, J. A. and NUALART, D. (1998). Stochastic evolution equations with random generators. Ann. Probab. 26 149-186. · Zbl 0939.60066 · doi:10.1214/aop/1022855415
[25] LIONS, P. L. (1988). Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. I. The case of bounded stochastic evolutions. Acta Math. 161 243-278. · Zbl 0757.93082 · doi:10.1007/BF02392299
[26] LIONS, P. L. (1989). Viscosity solutions of fully nonlinear second order equations and optimal stochastic control in infinite dimensions. II. Optimal control of Zakai’s equation. Stochastic Partial Differential Equations and Applications II. Lecture Notes in Math. 1390 147-170. Springer, Berlin. · Zbl 0757.93083 · doi:10.1007/BFb0083943
[27] LIONS, P. L. (1989). Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. III. Uniqueness of viscosity solutions for general second-order equations. J. Funct. Anal. 86 1-18. · Zbl 0757.93084 · doi:10.1016/0022-1236(89)90062-1
[28] MA, J. and YONG, J. (1997). Adapted solution of a degenerate backward SPDE with applications. Stochastic Process. Appl. 70 59-84. · Zbl 0911.60048 · doi:10.1016/S0304-4149(97)00057-4
[29] MA, J. and YONG, J. (1999). Forward-Backward Stochastic Differential Equations and Their Applications. Lecture Notes in Math. 1702. Springer, Berlin. · Zbl 0927.60004 · doi:10.1007/978-3-540-48831-6
[30] MA, Z. M. and RÖCKNER, M. (1992). Introduction to the Theory of (Non-Sy mmetric) Dirichlet Forms. Springer, Berlin.
[31] MUSIELA, M. (1993). Stochastic PDEs and term structure models. J. Internationale de Finance. IGR-AFFI, La Baule.
[32] NUALART, D. (1995). The Malliavin calculus and related topics. In Probability and Its Applications. Springer, Berlin. · Zbl 0837.60050
[33] NUALART, D. and PARDOUX, E. (1988). Stochastic calculus with anticipative integrands. Probab. Theory Related Fields 78 535-581. · Zbl 0629.60061 · doi:10.1007/BF00353876
[34] PARDOUX, E. (1998). BSDEs and viscosity solutions of a sy stem of semilinear parabolic and elliptic PDEs of second order. In Stochastic Analy sis and Related Topics: The Geilo Workshop 1996 (L. Decreusefond, J. Gjerde, B. Øksendal and A. S. Üstünel, eds.) 76-127. Birkhäuser, Berlin.
[35] PARDOUX, E. and PENG, S. (1990). Adapted solution of a backward stochastic differential equation. Sy stems and Control Lett. 14 55-61. · Zbl 0692.93064 · doi:10.1016/0167-6911(90)90082-6
[36] PARDOUX, E. and PENG, S. (1992). Backward stochastic differential equations and quasilinear parabolic partial differential equations. Stochastic Partial Differential Equations and Their Applications. Lecture Notes in Control Inf. Sci. 176 200-217. Springer, Berlin. · Zbl 0766.60079 · doi:10.1007/BFb0007334
[37] RÖCKNER, M. (1999). Lp-analysis of finite and infinite dimensional diffusion operators. Stochastic PDE’s and Kolmogorov Equations in Infinite Dimensions. Lecture Notes in Math. 1715 65-116. Springer, Berlin. · Zbl 0944.60078
[38] ŚWI \?ECH, A. (1993). Viscosity solutions of fully nonlinear partial differential equations with ”unbounded” terms in infinite dimensions. Ph.D. dissertation, Univ. California, Santa Barbara.
[39] ŚWI \?ECH, A. (1994). ”Unbounded” second order partial differential equations in infinitedimensional Hilbert spaces. Comm. Partial Differential Equations 19 1999-2036. · Zbl 0812.35154
[40] TESSITORE, G. (1996). Existence, uniqueness and space regularity of the adapted solutions of a backward SPDE. Stochastic Anal. Appl. 14 461-486. · Zbl 0876.60044 · doi:10.1080/07362999608809451
[41] ZABCZy K, J. (1999). Parabolic equations on Hilbert spaces. Stochastic PDE’s and Kolmogorov Equations in Infinite Dimensions. Lecture Notes in Math. 1715 117-213. Springer, Berlin. · Zbl 0942.35167 · doi:10.1007/BFb0092419
[42] ZABCZy K, J. (2000). Stochastic invariance and consistency of financial models. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 11 67-80. · Zbl 0978.60039
[43] PIAZZA LEONARDO DA VINCI, 32 20133 MILANO ITALY E-MAIL: marco.fuhrman@polimi.it DIPARTIMENTO DI MATEMATICA UNIVERSITÁ DI PARMA VIA D’AZEGLIO, 85 43100 PARMA ITALY E-MAIL: gianmario.tessitore@unipr.it
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.