×

Imaginary vectors in the dual canonical basis of \(U_q({\mathfrak n})\). (English) Zbl 1044.17009

If \(\mathfrak{g}\) is a simple Lie algebra over \(\mathbb C\), \(\mathfrak{n}\) a maximal nilpotent subalgebra of \(\mathfrak{g}\), let \(\mathbf B\) be the canonical basis of \(U_q(\mathfrak{n})\) and \({\mathbf B}^{\ast}\) the dual basis with respect to the natural scalar product in \(U_q(\mathfrak{n})\). Berenstein and Zelevinsky had conjectured that the product \(b_1b_2\) is of the form \(q^mb\), for \(b_1,b_2,b\in{\mathbf B}^{\ast}\) if and only if \(b_1\) and \(b_2\) \(q\)-commute. This would imply that \(b_1^2\) is always of the form \(q^mb\), for \(b_1 \in {\mathbf B}^{\ast}\). Such vectors are called real, otherwise they are called imaginary. The paper shows that there are imaginary vectors except when \(\mathfrak{g}\) if of type \(A_1,A_2,A_3,A_4,B_2\). The author uses this to exhibit an explicit irreducible representation \(V\) for \(U_q(\hat{sl}_N)\) such that \(V\otimes V\) is not irreducible.

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations

Keywords:

canonical basis

References:

[1] S. Ariki, On the decomposition numbers of the Heeke algebra of G(n, 1, m), J. Math. Kyoto Univ. 36 (1996), 789-808. · Zbl 0888.20011
[2] A. Berenstein, A. Zelevinsky, String bases for quantum groups of typ e Ar, Adv. Soviet Math. 16 (1993), 51-89. · Zbl 0794.17007
[3] P. Caldero, Adapted algebras for the Berenstein — Zelevinsky conjecture, Transformation Groups 8 (2003), No. 1, 37-50. · Zbl 1044.17007 · doi:10.1007/s00031-003-1121-3
[4] P. Caldero, A multiplicative property of quantum flag minors, preprint, 2001, math. RT/0112205. · Zbl 1030.17009
[5] V. Chari, A. Pressley, Quantum affine algebras and affine Heeke algebras, Pacific J. Math. 174 (1996), 295-326. · Zbl 0881.17011
[6] I. V. Cherednik, A new interpretation of Gelfand-Tzetlin bases, Duke Math. J. 54 (1987), 563-577. · Zbl 0645.17006 · doi:10.1215/S0012-7094-87-05423-8
[7] S. Fomin, A. Zelevinsky, Cluster algebras 1: Foundations, J. Amer. Math. Soc. 15 (2002), 497-529. · Zbl 1021.16017 · doi:10.1090/S0894-0347-01-00385-X
[8] V. Ginzburg, N. Yu. Reshetikhin, E. Vasserot, Quantum groups and flag varieties, A.M.S. Contemp. Math. 175 (1994), 101-130. · Zbl 0818.17018 · doi:10.1090/conm/175/01840
[9] Green, J. A.; Cabanes, M. (ed.), Quantum groups, Hall algebras and quantum shuffles, in: Finite Reductive Groups, Related Structures and Representations, 273-290 (1996)
[10] M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), 465-516. · Zbl 0739.17005 · doi:10.1215/S0012-7094-91-06321-0
[11] M. Kashiwara, Global bases of quantum groups, Duke Math. J. 69 (1993), 455-485. · Zbl 0774.17018 · doi:10.1215/S0012-7094-93-06920-7
[12] M. Kashiwara, Y. Saito, Geometric construction of crystal bases, Duke Math. J. 89 (1997), 9-6. · Zbl 0901.17006 · doi:10.1215/S0012-7094-97-08902-X
[13] P. Lalonde, A. Ram, Standard Lyndon bases of Lie algebras and enveloping algebras, Trans. Amer. Math. Soc. 347 (1995), 1821-1830. · Zbl 0833.17003 · doi:10.1090/S0002-9947-1995-1273505-4
[14] B. Leclerc, Dual canonical bases, quantum shuffles and q-characters, preprint 2002, math. QA/0209133.
[15] Leclerc, B.; Nazarov, M.; Thibon, J.- Y.; Joseph, A. (ed.); Melnikov, A. (ed.); Rentschler, R. (ed.), Induced representativns of affine Heeke algebras and canonical bases of quantum groups, 115-153 (2003) · Zbl 1085.17010 · doi:10.1007/978-1-4612-0045-1_6
[16] M. Lothaire, Combinatorics on Words, Readings, Massachusetts, 1983. · Zbl 0514.20045
[17] Lusztig, G., Introduction to Quantum Groups (1993) · Zbl 0788.17010
[18] G. Lusztig, Quivers, perverse sheaves and quantized enveloping algebras, J. Amer. Math. Soc. 4 (1991), 365-421. · Zbl 0738.17011 · doi:10.1090/S0894-0347-1991-1088333-2
[19] M. Reineke, Multi plicative properties of dual canonical bases of quantum groups, J. Algebra 211 (1999), 134-149. · Zbl 0917.17008 · doi:10.1006/jabr.1998.7570
[20] C. Reutenauer, Free Lie Algebras, Oxford University Press, 1993. · Zbl 0798.17001
[21] M. Rosso, Groupes quantiques et algebres de battage quantiques, C. R. Acad. Sci. Paris 320 (1995), 145-148. · Zbl 0929.17005
[22] M. Rosso, Quantum groups and quantum shuffles, Invent. Math. 133 (1998), 399-416. · Zbl 0912.17005 · doi:10.1007/s002220050249
[23] M. Rosso, Lyndon bases and the multiplicative formula for R-matrices, preprint, 2002. · Zbl 0441.22014
[24] A. Zelevinsky, Connected components of real double Bruhat cells, Intern. Math. Res. Notices 21 2000, 1131-1153. · Zbl 0978.20021 · doi:10.1155/S1073792800000568
[25] A. Zelevin sky, P ersonal communication. · Zbl 0929.17005
[26] Zelevinsky, A.; Fomin, S. (ed.), From Littlewood- Richardson coefficients to cluster algebms in three lectures, 253-273 (2002) · Zbl 1155.17303
[27] A. Zelevinsky, Induced representations of reductive p-adic groups, II, Ann. Sci. E.N.S. 13 (1980), 165-210. · Zbl 0441.22014
[28] A. B. Зeлeвискй, B. C. Petax, Oснoeнoe aффu’qnнoe npoсmpaнсмeo u кaнoнuчeскuэ бaзuсы e нenpueo∂uмыx npe∂смaвлeнuяx іpynnы Sp(4), ДAH CCP300 (1998), No. 1, 31-35. Engl. transl.: A.V. Zelevinskii, V. S. Retakh, The base affine space and canonical bases in irreducible representations of the group SP(4), Soviet Math. Dokl. 37 (1988), No. 3, 618-622. · Zbl 0672.22013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.