×

Geometric conditions for \(\square\)-irreducibility of certain representations of the general linear group over a non-Archimedean local field. (English) Zbl 1400.20047

Adv. Math. 339, 113-190 (2018); corrigendum ibid. 450, Article ID 109767, 2 p. (2024).
From the authors’ abstract: “Let \(\pi\) be an irreducible, complex, smooth representation of \(\mathrm{GL}_n\) over a local non-Archimedean (skew) field.” Assume that no two segments in the Zelevinsky parameters of \(\pi\) have the same beginning or the same end. One says \(\pi\) is \(\square\)-irreducible if the parabolic induction of \(\pi \otimes \pi\) to \(\text{GL}_{2 n}\) is irreducible …‘we give a geometric necessary and sufficient criterion for the irreducibility. The latter irreducibility property is the \(p\)-adic analogue of a special case of the notion of “real representations” introduced by B. Leclerc [Transform. Groups 8, No. 1, 95–104 (2003; Zbl 1044.17009)] and studied recently by S.-J. Kang et al. [Compos. Math. 151, No. 2, 377–396 (2015; Zbl 1366.17014)] (in the context of KLR or quantum affine algebras). Our criterion is in terms of singularities of Schubert varieties of type \(A\) and admits a simple combinatorial description. It is also equivalent to a condition studied by C. Geiß et al. [Invent. Math. 165, No. 3, 589–632 (2006; Zbl 1167.16009); Adv. Math. 228, No. 1, 329–433 (2011; Zbl 1232.17035)]. The proofs involve a lot of combinatorics with multisegments.

MSC:

20G25 Linear algebraic groups over local fields and their integers
22E50 Representations of Lie and linear algebraic groups over local fields

References:

[1] Alpoge, L., Square-root cancellation for the signs of Latin squares, Combinatorica, 37, 2, 137-142, (2017), MR3638338 · Zbl 1399.05017
[2] Arakawa, T.; Suzuki, T., Duality between \(\mathfrak{s} \mathfrak{l}_n(\mathbf{C})\) and the degenerate affine Hecke algebra, J. Algebra, 209, 1, 288-304, (1998), MR1652134 · Zbl 0919.17005
[3] Alon, N.; Tarsi, M., Colorings and orientations of graphs, Combinatorica, 12, 2, 125-134, (1992), MR1179249 · Zbl 0756.05049
[4] Aubert, A.-M., Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d’un groupe réductif p-adique, Trans. Amer. Math. Soc., Trans. Amer. Math. Soc., 348, 11, 4687-4690, (1996), MR1390967 (Erratum) · Zbl 0861.22012
[5] Beĭlinson, A.; Bernstein, J., Localisation de g-modules, C. R. Math. Acad. Sci. Paris, 292, 1, 15-18, (1981), MR610137 (82k:14015) · Zbl 0476.14019
[6] Beĭlinson, A.; Bernstein, J., A proof of jantzen conjectures, (I.M. Gel’fand Seminar, Adv. Sov. Math., vol. 16, (1993), Amer. Math. Soc. Providence, RI), 1-50, MR1237825 (95a:22022) · Zbl 0790.22007
[7] Bernstein, J.; Bezrukavnikov, R.; Kazhdan, D., Deligne-Lusztig duality and wonderful compactification, Selecta Math. (N.S.), 24, 1, 7-20, (2018), MR3769724 · Zbl 1496.20075
[8] Barbasch, D.; Ciubotaru, D., Ladder representations of \(\operatorname{GL}(n, \mathbb{Q}_p)\), (Representations of Reductive Groups, Prog. Math. Phys., vol. 312, (2015), Birkhäuser/Springer Cham), 117-137, MR3495794 · Zbl 1346.22008
[9] Bernstein, J. N., Le “centre” de Bernstein, (Deligne, P., Representations of Reductive Groups over a Local Field, (1984), Hermann Paris), 1-32, Travaux en Cours, MR771671 (86e:22028) · Zbl 0599.22016
[10] Brylinski, J.-L.; Kashiwara, M., Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math., 64, 3, 387-410, (1981), MR632980 (83e:22020) · Zbl 0473.22009
[11] Bushnell, C. J.; Kutzko, P. C., The admissible dual of \(\operatorname{GL}(N)\) via compact open subgroups, Annals of Mathematics Studies, vol. 129, (1993), Princeton University Press Princeton, NJ, MR1204652 · Zbl 0787.22016
[12] Billey, S.; Lakshmibai, V., Singular loci of Schubert varieties, Progress in Mathematics, vol. 182, (2000), Birkhäuser Boston, Inc. Boston, MA, MR1782635 · Zbl 0959.14032
[13] Badulescu, A. I.; Renard, D., Zelevinsky involution and Moeglin-waldspurger algorithm for \(\operatorname{GL}_n(D)\), (Functional Analysis IX, Various Publ. Ser. (Aarhus), vol. 48, (2007), Univ. Aarhus Aarhus), 9-15, MR2349436 (2008j:22023) · Zbl 1139.22012
[14] Broussous, P.; Sécherre, V.; Stevens, S., Smooth representations of \(\operatorname{GL}_m(D)\) V: endo-classes, Doc. Math., 17, 23-77, (2012), MR2889743 · Zbl 1280.22018
[15] Billey, S. C.; Warrington, G. S., Maximal singular loci of Schubert varieties in \(\operatorname{SL}(n) / B\), Trans. Amer. Math. Soc., 355, 10, 3915-3945, (2003), MR1990570 · Zbl 1037.14020
[16] Bernstein, I. N.; Zelevinsky, A. V., Induced representations of reductive \(\mathfrak{p}\)-adic groups. I, Ann. Sci. Éc. Norm. Supér. (4), 10, 4, 441-472, (1977), MR0579172 (58 #28310) · Zbl 0412.22015
[17] Chari, V.; Hernandez, D., Beyond Kirillov-Reshetikhin modules, (Quantum Affine Algebras, Extended Affine Lie Algebras, and their Applications, Contemp. Math., vol. 506, (2010), Amer. Math. Soc. Providence, RI), 49-81, MR2642561 · Zbl 1277.17009
[18] Cortez, A., Singularités génériques et quasi-résolutions des variétés de Schubert pour le groupe linéaire, Adv. Math., 178, 2, 396-445, (2003), MR1994224 · Zbl 1044.14026
[19] Chari, V.; Pressley, A., Quantum affine algebras and affine Hecke algebras, Pacific J. Math., 174, 2, 295-326, (1996), MR1405590 · Zbl 0881.17011
[20] Deligne, P., Catégories tannakiennes, (The Grothendieck Festschrift, vol. II, Progr. Math., vol. 87, (1990), Birkhäuser Boston Boston, MA), 111-195, MR1106898 · Zbl 0727.14010
[21] Deodhar, V. V., Local Poincaré duality and nonsingularity of Schubert varieties, Comm. Algebra, 13, 6, 1379-1388, (1985), MR788771 (86i:14015) · Zbl 0579.14046
[22] Drisko, A. A., On the number of even and odd Latin squares of order \(p + 1\), Adv. Math., 128, 1, 20-35, (1997), MR1451417 · Zbl 0885.05034
[23] Drisko, A. A., Proof of the Alon-tarsi conjecture for \(n = 2^r p\), Electron. J. Combin., 5, (1998), research paper 28, 5, MR1624999 · Zbl 0908.05023
[24] Etingof, P.; Gelaki, S.; Nikshych, D.; Ostrik, V., Tensor categories, Mathematical Surveys and Monographs, vol. 205, (2015), American Mathematical Society Providence, RI, MR3242743 · Zbl 1365.18001
[25] Gasharov, V., Sufficiency of lakshmibai-sandhya singularity conditions for Schubert varieties, Compos. Math., 126, 1, 47-56, (2001), MR1827861 · Zbl 0983.14038
[26] Geiß, C.; Leclerc, B.; Schröer, J., Rigid modules over preprojective algebras, Invent. Math., 165, 3, 589-632, (2006), MR2242628 · Zbl 1167.16009
[27] Geiß, C.; Leclerc, B.; Schröer, J., Kac-Moody groups and cluster algebras, Adv. Math., 228, 1, 329-433, (2011), MR2822235 · Zbl 1232.17035
[28] Gasharov, V.; Reiner, V., Cohomology of smooth Schubert varieties in partial flag manifolds, J. Lond. Math. Soc. (2), 66, 3, 550-562, (2002), MR1934291 · Zbl 1064.14056
[29] Gan, W. T.; Takeda, S., A proof of the Howe duality conjecture, J. Amer. Math. Soc., 29, 2, 473-493, (2016), MR3454380 · Zbl 1342.11051
[30] Gurevich, M., An identity of parabolic Kazhdan-Lusztig polynomials arising from square-irreducible modules, (2018)
[31] Heiermann, V., Opérateurs d’entrelacement et algèbres de Hecke avec paramètres d’un groupe réductif p-adique: le cas des groupes classiques, Selecta Math. (N.S.), 17, 3, 713-756, (2011), MR2827179 (2012h:22022) · Zbl 1246.22021
[32] Henderson, A., Nilpotent orbits of linear and cyclic quivers and Kazhdan-Lusztig polynomials of type A, Represent. Theory, 11, 95-121, (2007), (electronic), MR2320806 · Zbl 1216.17011
[33] Hernandez, D.; Leclerc, B., Cluster algebras and quantum affine algebras, Duke Math. J., 154, 2, 265-341, (2010), MR2682185 · Zbl 1284.17010
[34] Hernandez, D.; Leclerc, B., Monoidal categorifications of cluster algebras of type A and D, (Symmetries, Integrable Systems and Representations, Springer Proc. Math. Stat., vol. 40, (2013), Springer Heidelberg), 175-193, MR3077685 · Zbl 1317.13052
[35] Janssen, J. C.M., On even and odd Latin squares, J. Combin. Theory Ser. A, 69, 1, 173-181, (1995), MR1309160 · Zbl 0819.05016
[36] Jantzen, C., Jacquet modules of p-adic general linear groups, Represent. Theory, 11, 45-83, (2007), (electronic), MR2306606 (2008g:22023) · Zbl 1139.22014
[37] Kang, S.-J.; Kashiwara, M.; Kim, M.; Oh, S., Simplicity of heads and socles of tensor products, Compos. Math., 151, 2, 377-396, (2015), MR3314831 · Zbl 1366.17014
[38] Kang, S.-J.; Kashiwara, M.; Kim, M.; Oh, S., Monoidal categorification of cluster algebras, J. Amer. Math. Soc., 31, 2, 349-426, (2018), MR3758148 · Zbl 1460.13039
[39] Kazhdan, D.; Lusztig, G., Representations of Coxeter groups and Hecke algebras, Invent. Math., 53, 2, 165-184, (1979), MR560412 (81j:20066) · Zbl 0499.20035
[40] Kazhdan, D.; Lusztig, G., Schubert varieties and Poincaré duality, (Geometry of the Laplace Operator, Univ. Hawaii, Honolulu, Hawaii, 1979, Proc. Sympos. Pure Math., vol. XXXVI, (1980), Amer. Math. Soc. Providence, RI), 185-203, MR573434 (84g:14054)
[41] Kret, A.; Lapid, E., Jacquet modules of ladder representations, C. R. Math. Acad. Sci. Paris, 350, 21-22, 937-940, (2012), MR2996769 · Zbl 1253.22011
[42] Kassel, C.; Lascoux, A.; Reutenauer, C., The singular locus of a Schubert variety, J. Algebra, 269, 1, 74-108, (2003), MR2015302 (2005f:14096) · Zbl 1032.14012
[43] Knuth, D. E., The art of computer programming, vol. 1fundamental algorithms, (1997), Addison-Wesley Reading, MA, MR0286317 (3rd ed.), MR3077152 · Zbl 0895.68055
[44] Kashiwara, M.; Tanisaki, T., Characters of irreducible modules with non-critical highest weights over affine Lie algebras, (Representations and Quantizations, Shanghai, 1998, (2000), China High. Educ. Press Beijing), 275-296, MR1802178 (2001k:17037) · Zbl 1002.17009
[45] Knight, H.; Zelevinsky, A., Representations of quivers of type A and the multisegment duality, Adv. Math., 117, 2, 273-293, (1996), MR1371654 (97e:16029) · Zbl 0915.16009
[46] Lapid, E., A tightness property of relatively smooth permutations, (2017)
[47] Lapid, E., Conjectures about certain parabolic Kazhdan-Lusztig polynomials, (Geometric Aspects of the Trace Formula, Simons Symp., (2018), Springer Cham), 267-298
[48] Leclerc, B., Imaginary vectors in the dual canonical basis of \(U_q(\mathfrak{n})\), Transform. Groups, 8, 1, 95-104, (2003), MR1959765 · Zbl 1044.17009
[49] Leclerc, B., Algèbres de Hecke and et algèbres préprojective, (2005), notes from a lecture in Séminaire Chevalley; available at
[50] Lapid, E.; Mínguez, A., On a determinantal formula of tadić, Amer. J. Math., 136, 1, 111-142, (2014), MR3163355 · Zbl 1288.22013
[51] Lapid, E.; Mínguez, A., On parabolic induction on inner forms of the general linear group over a non-Archimedean local field, Selecta Math. (N.S.), 22, 4, 2347-2400, (2016), MR3573961 · Zbl 1355.22005
[52] Lovász, L.; Plummer, M. D., Matching theory, (2009), AMS Chelsea Publishing Providence, RI, corrected reprint of the 1986 original [MR0859549], MR2536865 · Zbl 1175.05002
[53] Lakshmibai, V.; Seshadri, C. S., Singular locus of a Schubert variety, Bull. Amer. Math. Soc. (N.S.), 11, 2, 363-366, (1984), MR752799 · Zbl 0549.14016
[54] Lakshmibai, V.; Sandhya, B., Criterion for smoothness of Schubert varieties in \(\operatorname{Sl}(n) / B\), Proc. Indian Acad. Sci. Math. Sci., 100, 1, 45-52, (1990), MR1051089 · Zbl 0714.14033
[55] Lapid, E.; Tadić, M., Some results on reducibility of parabolic induction for classical groups, Amer. J. Math., (2018), in press
[56] Lusztig, G., Affine Hecke algebras and their graded version, J. Amer. Math. Soc., 2, 3, 599-635, (1989), MR991016 · Zbl 0715.22020
[57] Manivel, L., Le lieu singulier des variétés de Schubert, Int. Math. Res. Not. IMRN, 16, 849-871, (2001), MR1853139 · Zbl 1023.14022
[58] Mínguez, A., Correspondance de Howe explicite: paires duales de type II, Ann. Sci. Éc. Norm. Supér. (4), 41, 5, 717-741, (2008), MR2504432 (2010h:22024) · Zbl 1220.22014
[59] Mínguez, A., Sur l’irréductibilité d’une induite parabolique, J. Reine Angew. Math., 629, 107-131, (2009), MR2527415 (2010h:22025) · Zbl 1172.22008
[60] Mœglin, C.; Waldspurger, J.-L., Sur l’involution de zelevinski, J. Reine Angew. Math., 372, 136-177, (1986), MR863522 (88c:22019) · Zbl 0594.22008
[61] Ol’šanskiĭ, G. I., Intertwining operators and complementary series in the class of representations of the full matrix group over a locally compact division algebra that are induced by parabolic subgroups, Mat. Sb., 93, 135, 218-253, (1974), 326, MR0499010 (58 #16988) · Zbl 0298.22016
[62] Pjaseckiĭ, V. S., Linear Lie groups that act with a finite number of orbits, Funct. Anal. Appl., 9, 4, 85-86, (1975), MR0390138 (52 #10964)
[63] Sécherre, V., Représentations lisses de \(\operatorname{GL}(m, D)\). I. caractères simples, Bull. Soc. Math. France, 132, 3, 327-396, (2004), MR2081220 (2005f:22027) · Zbl 1079.22016
[64] Sécherre, V., Représentations lisses de \(\operatorname{GL}(m, D)\). II. β-extensions, Compos. Math., 141, 6, 1531-1550, (2005), MR2188448 (2006j:22018) · Zbl 1082.22011
[65] Sécherre, V., Représentations lisses de \(\operatorname{GL}_m(D)\). III. types simples, Ann. Sci. Éc. Norm. Supér. (4), 38, 6, 951-977, (2005), MR2216835 (2007a:22010) · Zbl 1106.22014
[66] Springer, T. A., Schubert varieties and generalizations, (Representation Theories and Algebraic Geometry, Montreal, PQ, 1997, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 514, (1998), Kluwer Acad. Publ. Dordrecht), 413-440, MR1653040 (2000d:14053) · Zbl 0927.14023
[67] Sécherre, V.; Stevens, S., Représentations lisses de \(\operatorname{GL}_m(D)\). IV. représentations supercuspidales, J. Inst. Math. Jussieu, 7, 3, 527-574, (2008), MR2427423 (2009d:22023) · Zbl 1140.22014
[68] Sécherre, V.; Stevens, S., Smooth representations of \(G L_m(D)\) VI: semisimple types, Int. Math. Res. Not. IMRN, 13, 2994-3039, (2012), MR2946230 · Zbl 1246.22023
[69] Stanley, R. P., Enumerative combinatorics, vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, (1999), Cambridge University Press Cambridge, with a foreword by Gian-Carlo Rota and Appendix 1 by Sergey Fomin, MR1676282 (2000k:05026) · Zbl 0928.05001
[70] Taiwang, D., Parabolic induction and geometry of orbital varieties for \(G L(n)\)
[71] Waldspurger, J.-L., La formule de Plancherel pour LES groupes p-adiques (d’après harish-chandra), J. Inst. Math. Jussieu, 2, 2, 235-333, (2003), MR1989693 (2004d:22009) · Zbl 1029.22016
[72] Woo, A.; Yong, A., Governing singularities of Schubert varieties, J. Algebra, 320, 2, 495-520, (2008), MR2422304 · Zbl 1152.14046
[73] Zappa, P., The Cayley determinant of the determinant tensor and the Alon-tarsi conjecture, Adv. in Appl. Math., 19, 1, 31-44, (1997), MR1453404 · Zbl 0885.05035
[74] Zelevinsky, A. V., Induced representations of reductive \(\mathfrak{p}\)-adic groups. II. on irreducible representations of \(\operatorname{GL}(n)\), Ann. Sci. Éc. Norm. Supér. (4), 13, 2, 165-210, (1980), MR584084 (83g:22012) · Zbl 0441.22014
[75] Zelevinskiĭ, A. V., The p-adic analogue of the Kazhdan-Lusztig conjecture, Funktsional. Anal. i Prilozhen., 15, 2, 9-21, (1981), 96, MR617466 (84g:22039) · Zbl 0463.22013
[76] Zelevinskiĭ, A. V., Two remarks on graded nilpotent classes, Uspekhi Mat. Nauk, 40, 1(241), 199-200, (1985), MR783619 (86e:14027) · Zbl 0577.20032
[77] Zelevinsky, A., Multisegment duality, canonical bases and total positivity, Proceedings of the International Congress of Mathematicians, Berlin, 1998, Doc. Math., III, 409-417, (1998), (electronic), MR1648174 (2000a:05217) · Zbl 0918.05104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.