×

Shape-preserving interpolants with high smoothness. (English) Zbl 1027.65009

The shape preserving interpolation of univariate data is the theme of this article. The spline curves computed in order to maintain the shape of data are \(C^3\) and of polynomial degree five. In order to guarantee the shape preserving property of the spline curve, certain tension parameters are introduced and used in the construction.

MSC:

65D05 Numerical interpolation
41A05 Interpolation in approximation theory
41A15 Spline approximation
65D07 Numerical computation using splines
41A25 Rate of convergence, degree of approximation
41A29 Approximation with constraints
Full Text: DOI

References:

[1] Akima, H., A new method of interpolation and smooth curve fitting based on local procedures, J. Assoc. Comput. Mech., 17, 589-602 (1970) · Zbl 0209.46805
[2] Applegarth, I.; Kaklis, P. D.; Wahl, S., Benchmark Tests on the Generation of Fair Shapes Subject to Constraints (2000), Teubner: Teubner Stuttgart
[3] Costantini, P., On monotone and convex spline interpolation, Math. Comp., 46, 203-214 (1986) · Zbl 0617.41015
[4] Costantini, P., An algorithm for computing shape-preserving interpolating splines of arbitrary degree, J. Comput. Appl. Math., 22, 89-136 (1988) · Zbl 0646.65009
[5] Costantini, P., Curve and surface construction using variable degree polynomial splines, Comput. Aided Geom. Des., 17, 419-446 (2000) · Zbl 0938.68128
[6] Costantini, P.; Manni, C., Shape-preserving \(C^3\) interpolation: the curve case, Adv. Comput. Math., 18, 41-63 (2003) · Zbl 1018.65017
[7] Delbourgo, R.; Gregory, J. A., \(C^2\) rational quadratic spline interpolation to monotonic data, IMA J. Numer. Anal., 3, 141-152 (1983) · Zbl 0523.65005
[8] Goodman, T. N.T., Total positivity and the shape of curves, (Gasca, M.; Micchelli, C. A., Total Positivity and its Applications (1996), Kluwer: Kluwer Dordrecht), 157-186 · Zbl 0894.68159
[9] T.N.T. Goodman, Shape preserving interpolation by curves, in: J. Levesley, I.J. Anderson, J.C. Mason (Eds.), Algorithms for Approximation IV, University of Huddersfield Proceedings, Huddersfield, 2002, pp. 24-35.; T.N.T. Goodman, Shape preserving interpolation by curves, in: J. Levesley, I.J. Anderson, J.C. Mason (Eds.), Algorithms for Approximation IV, University of Huddersfield Proceedings, Huddersfield, 2002, pp. 24-35.
[10] Grandison, C., Behavior of exponential splines as tensions increase without bound, J. Approx. Theory, 89, 289-307 (1997) · Zbl 0877.41010
[11] Hoschek, J.; Lasser, D., Fundamentals of Computer Aided Geometric Design (1993), A.K. Peters, Ltd: A.K. Peters, Ltd Wellesley, MA · Zbl 0788.68002
[12] Huynh, H. T., Accurate monotone cubic interpolation, SIAM J. Numer. Anal., 30, 57-101 (1993) · Zbl 0772.65004
[13] Kvasov, B. I., Algorithms for shape preserving local approximation with automatic selection of tension parameters, Comput. Aided Geom. Des., 17, 17-37 (2000) · Zbl 0939.68122
[14] Lamberti, P.; Manni, C., Shape-preserving \(C^2\) functional interpolation via parametric cubics, Numer. Algorithms, 28, 229-254 (2001) · Zbl 1004.41009
[15] Manni, C., \(C^1\) comonotone Hermite interpolation via parametric cubics, J. Comput. Appl. Math., 69, 143-157 (1996) · Zbl 0858.65007
[16] Manni, C., Parametric shape preserving Hermite interpolation by piecewise quadratics, (Fontanella, F.; Jetter, K.; Laurent, P. J., Advanced Topics in Multivariate Approximation (1996), World Scientific Publishing Co. Pte: World Scientific Publishing Co. Pte Singapore), 211-226 · Zbl 1186.41015
[17] Manni, C., On shape preserving \(C^2\) Hermite interpolation, BIT, 41, 127-148 (2001) · Zbl 0985.65008
[18] Marusic, M.; Rogina, M., Sharp error bounds for interpolating splines in tension, J. Comput. Appl. Math., 61, 205-223 (1995) · Zbl 0848.41007
[19] Mulansky, B.; Schmidt, J. W., Constructive methods in convex \(C^2\) interpolation using quartic splines, Numer. Algorithms, 12, 111-124 (1996) · Zbl 0858.65009
[20] Schweikert, D. G., An interpolation curve using a spline in tension, J. Math. Phys., 45, 312-317 (1966) · Zbl 0146.14102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.