×

A category for the adjoint representation. (English) Zbl 1026.17015

Given a finite graph \(\Gamma\), one may have a quiver with the given underlying graph and a quotient algebra of the corresponding path algebra (over the complex field) of the quiver modulo the paths of length greater than one. Let \(\Lambda (\Gamma)\) be the trivial extension of this quotient algebra. In the paper under review the authors construct an Abelian category \(\mathcal C\) based on both the category of all finite-dimensional graded left \(\Lambda (\Gamma)\)-modules and the category of all vector spaces over the complex field. On this category \(\mathcal C\) the authors define some functors and then use these functors to give a realization of the quantum group \(U_q(\mathfrak g)\) of the simple Lie algebra \(\mathfrak g\) if \(\Gamma\) is the Dynkin diagram determining \(\mathfrak g\). Some other properties related to the action of the braid group (defined by the graph \(\Gamma\)) on the derived category of the \(\Lambda(\Gamma)\)-modules are discussed. There is a related paper on \(\lambda(\Gamma)\), as mentioned in the paper, namely, the work of [R. Martínez-Villa, CMS Conf. Proc. 18, 487-504 (1996; Zbl 0860.16010)].

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
16G10 Representations of associative Artinian rings

Citations:

Zbl 0860.16010

References:

[1] Ariki, S., On the decomposition numbers of the Hecke algebra of \(G(m,1,n)\), J. Math. Kyoto Univ., 36, 789-808 (1996) · Zbl 0888.20011
[2] Alperin, J. L., Local Representation Theory. Local Representation Theory, Cambridge Studies in Advanced Mathematics, 11 (1986), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0593.20003
[3] Auslander, M., Rational singularities and almost split sequences, Trans. Amer. Math. Soc., 293, 511-531 (1986) · Zbl 0594.20030
[4] Beilinson, A.; Ginzburg, V.; Soergel, W., Koszul duality patterns in representation theory, J. Amer. Math. Soc., 9, 473-527 (1996) · Zbl 0864.17006
[5] Curtis, C. W.; Reiner, I., Representation Theory of Finite Groups and Associative Algebras. Representation Theory of Finite Groups and Associative Algebras, Pure and Applied Mathematics, XI (1962), Interscience: Interscience New York/London · Zbl 0131.25601
[6] Erdmann, K., Blocks of Tame Representation Type and Related Algebras. Blocks of Tame Representation Type and Related Algebras, Lecture Notes in Mathematics, 1428 (1990), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0696.20001
[7] Feit, W., The Representation Theory of Finite Groups. The Representation Theory of Finite Groups, North-Holland Mathematical Library, 25 (1982), North-Holland: North-Holland Amsterdam · Zbl 0493.20007
[8] Gonzalez-Springer, G.; Verdier, J.-L, Construction géométrique de la correspondance de McKay, Ann. Sci. École Norm. Sup., 16, 410-449 (1983) · Zbl 0538.14033
[9] Hiss, G.; Lux, K., Brauer Trees of Sporadic Groups (1989), Oxford Univ. Press: Oxford Univ. Press London · Zbl 0685.20013
[10] Jantzen, J. C., Lectures on Quantum Groups. Lectures on Quantum Groups, Graduate Studies in Mathematics, 6 (1996), Am. Math. Soc: Am. Math. Soc Providence · Zbl 0842.17012
[11] Kashiwara, M., On crystal bases of the \(q\)-analogue of universal enveloping algebras, Duke Math. J., 63, 465-516 (1991) · Zbl 0739.17005
[12] Kapranov, M.; Vasserot, E., Kleinian singularities, derived categories and Hall algebras, Math. Ann., 316, 565-576 (2000) · Zbl 0997.14001
[13] M. Khovanov, How to categorify finite-dimensional irreducible representations of quantum \(sl_2\); M. Khovanov, How to categorify finite-dimensional irreducible representations of quantum \(sl_2\)
[14] Khovanov, M.; Seidel, P., Quivers, Floer homology and geometric intersection numbers, J. Amer. Math. Soc. (2002)
[15] Knörrer, H., Group representations and the resolution of rational double points, Finite Groups—Coming of Age (Montreal, Que., 1982). Finite Groups—Coming of Age (Montreal, Que., 1982), Contemporary Mathematics, 45 (1982), Am. Math. Soc: Am. Math. Soc Providence, p. 175-222 · Zbl 0589.14002
[16] König, S.; Zimmermann, A., Derived Equivalences for Group Rings. Derived Equivalences for Group Rings, Lecture Notes in Mathematics, 1685 (1998), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0898.16002
[17] Kostant, B., The McKay correspondence, the Coxeter element and representation theory, Élie Cartan et les mathématiques d’aujourd’hui (1985), p. 209-255 · Zbl 0605.22010
[18] Lamotke, K., Regular Solids and Isolated Singularities. Regular Solids and Isolated Singularities, Advanced Lectures in Mathematics Vieweg (1986), Braunschweig · Zbl 0584.32014
[19] Lascoux, A.; Leclerc, B.; Thibon, J.-Y, Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys., 181, 205-263 (1996) · Zbl 0874.17009
[20] Loupias, M., Representations indécomposables de dimension finie des algèbres de Lie, Manuscripta Math., 6, 365-379 (1972) · Zbl 0229.17006
[21] Lusztig, G., Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc., 3, 447-498 (1990) · Zbl 0703.17008
[22] Lusztig, G., Introduction to Quantum Groups (1993), Birkhauser: Birkhauser Boston · Zbl 0788.17010
[23] Lusztig, G.; Tits, J., The inverse of a Cartan matrix, An. Univ. Timişoara Ser. Ştiinţ. Mat., 30, 17-23 (1992) · Zbl 0830.17006
[24] McKay, J., Graphs, singularities and finite groups, Proceedings of Symposia in Pure Mathematics (1980), Am. Math. Soc: Am. Math. Soc Providence, p. 183-186 · Zbl 0451.05026
[25] Martı́nez-Villa, R., Application of Koszul algebras: the preprojective algebra, Representation Theory of Algebras. Representation Theory of Algebras, Canadian Mathematical Society Conference Proceedings, 18 (1998), p. 487-504 · Zbl 0860.16010
[26] Nakajima, H., Instantons on ALE spaces, quiver varieties and Kac-Moody algebras, Duke Math. J., 76, 365-416 (1994) · Zbl 0826.17026
[27] Reiten, I., Dynkin diagrams and the representation therory of algebras, Notices Amer. Math. Soc., 44, 546-556 (1997) · Zbl 0940.16009
[28] Rickard, J., Derived categories and stable equivalence, J. Pure Appl. Algebra, 61, 303-317 (1989) · Zbl 0685.16016
[29] Rickard, J., Splendid equivalences: derived categories and permutation modules, Proc. London Math. Soc. (3), 72, 331-358 (1996) · Zbl 0862.20010
[30] R. Rouquier, Travaux de recherches. Représentations et catégories dérivées, 1998, available at, http:/www.math.jussieu.fr/ rouquier/; R. Rouquier, Travaux de recherches. Représentations et catégories dérivées, 1998, available at, http:/www.math.jussieu.fr/ rouquier/
[31] R. Rouquier, and, A. Zimmermann, Picard groups for derived module categories, preprint, 1998, available at, http:/www.math.jussieu.fr/ rouquier/; R. Rouquier, and, A. Zimmermann, Picard groups for derived module categories, preprint, 1998, available at, http:/www.math.jussieu.fr/ rouquier/ · Zbl 1058.18007
[32] Seidel, P.; Thomas, R. P., Braid group actions on derived categories of coherent sheaves, Duke Math. J., 108, 37-108 (2001) · Zbl 1092.14025
[33] Springer, T. A., Poincaré series of binary polyhedral groups and McKay’s correspondence, Math. Ann., 278, 99-116 (1987) · Zbl 0635.20016
[34] Tachikawa, H., Representations of trivial extensions of hereditary algebras, Lecture Notes in Mathematics (1980), Springer-Verlag: Springer-Verlag Berlin/New York, p. 579-599 · Zbl 0451.16019
[35] Thomas, R. P., Mirror symmetry and actions of braid groups on derived categories, Proceedings of the Harvard Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Cycles (1999), International Press
[36] Yamane, H., On representations theories of Iwahori-Hecke algebras \(H_q}(W)\) at roots of unity, (Ge, M. L.; de Vega, H. J., Quantum Groups, Integrable Statistical Models and Knot Theory (1993), World Scientific: World Scientific Singapore), 319-342
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.