×

A unified approach to nonlinear integro-differential inverse problems of parabolic type. (English) Zbl 1019.45006

The authors deal with the problem of recovering the scalar unknown kernel \(h\) in the nonlinear integro-differential equation \[ u'(t) = G(u(t)) + \int_0^t h(t-s)F(u(t),u(s)) ds + f(t),\qquad t\in [0,T], \tag{1} \] related to the Banach space \(X\) and subject to the initial condition \[ u(0) = u_0,\tag{2} \] and to the additional condition \[ \Phi[u(t)] = g(t), \quad t\in [0,T], \tag{3} \] \(\Phi\) being a continuous linear functional on \(X\).
The authors assume that the nonlinear operators \(G\) and \(F\) are of class \(C^2\) with Lipschitz-continuous second-order derivatives, that the Frechét derivative \(G'(u_0):D\subset X\to X\) is a generator of an analytic semigroup of linear bounded operators as well as suitable regularity and consistency conditions involving the data.
Under the solvability condition \(\Phi[F(u_0,u_0)]\neq 0\) the identification problem (1)–(3) admits, for some \(\tau \in (0,T]\), a unique solution \((u,h)\in [W^{2+\beta,p}(0,\tau;X)\cap W^{1+\beta,p}(0,\tau;D)]\times W^{\beta,p}(0,\tau)\), \(p\in (1,+\infty]\), \(\beta \in (0,1)\backslash \{1/p\}\), where \(W^{2+\beta,\infty}(0,\tau;Z) =C^{2+\beta}(0,\tau;Z)\). Furthermore a global in time uniqueness result is proved.
Finally, the abstract results are applied to identification problems related to population dynamics, combustion of a material with memory and to the fully nonlinear problem (1)–(3), where \[ G(u_1)=d(A(x,D_x)u_1),\qquad F(u_1,u_2)=e(A(x,D_x)u_2) \] \(d\) and \(e\) being smooth scalar functions and \(A(x,D_x)\) being an elliptic operator of order \(2m\) endowed with general homogeneous boundary conditions \(B_j(x,D_x)u=0\), \(j=1,\ldots,m\).

MSC:

45Q05 Inverse problems for integral equations
80A25 Combustion
92D25 Population dynamics (general)
45N05 Abstract integral equations, integral equations in abstract spaces
45J05 Integro-ordinary differential equations
45G10 Other nonlinear integral equations
Full Text: DOI

References:

[1] Acquistapace, P. and B. Terreni: Hölder classes with boundary conditions as interpolation spaces. Math. Z. 195 (1987), 451 - 471. · Zbl 0635.35024 · doi:10.1007/BF01166699
[2] Adams, R.: Sobolev spaces (Pure Appl. Math.: Vol. 65). London: Acad. Press 1975.
[3] Colombo, F. and A. Lorenzi: Identification of time and space dependent relax- ation kernels for materials with memory related to cylindrical domains, Part I. J. Math. Anal. Appl. 213 (1997), 32 - 62. · Zbl 0892.45006 · doi:10.1006/jmaa.1997.5364
[4] Colombo, F. and A. Lorenzi: An inverse problem in the theory of combustion of materials with memory. Adv. Diff. Equ. 3 (1998), 133 - 154. · Zbl 0958.35145
[5] Di Blasio, G.: Linear parabolic equations in Lp spaces. Ann. Mat. Pura Appl. 138 (1984), 55 - 104. · Zbl 0568.35047 · doi:10.1007/BF01762539
[6] Di Blasio, G.: Sobolev regularity for solutions of parabolic equations by extrap- olation methods. Adv. Diff. Equ. 6 (2001), 481 - 612. · Zbl 1020.34049
[7] Dore, G. and A. Venni: On the closedness of the sum of two closed operators. Math. Z. 196 (1987), 189 - 201. 467 · Zbl 0615.47002 · doi:10.1007/BF01163654
[8] Gourley, S. A. and N. F. Britton: On a modified Volterra population equation with diffusion. Nonlin. Anal.: Theory, Methods and Appl. 21 (1993), 389 -395. · Zbl 0805.35062 · doi:10.1016/0362-546X(93)90082-4
[9] Grasselli, M.: An identification problem for a linear integrodifferential equation occurring in heat flow. Math. Meth. in Appl. Sci. 15 (1992), 167 - 186. · Zbl 0753.45010 · doi:10.1002/mma.1670150304
[10] Grasselli, M. and A. Lorenzi: An inverse problem for an abstract nonlinear parabolic integrodifferential equation. Diff. Int. Equ. 6 (1993), 63 - 81. · Zbl 0786.45014
[11] Guidetti, D.: On interpolation with boundary conditions. Math. Z. 207 (1991), 439 - 460. · Zbl 0713.46048 · doi:10.1007/BF02571401
[12] Janno, J. and L. Von Woldersdorf: Inverse problems for memory kernels by Laplace transform methods. Z. Anal. Anw. 19 (2000), 489 - 510. · Zbl 0956.35131 · doi:10.4171/ZAA/963
[13] Janno, J. and L. Von Woldersdorf: An inverse problem for identification of a time and space-dependent memory kernel of a special kind in heat conduction. Inv. Problems 15 (1999), 1455 - 1467. · Zbl 0947.35172 · doi:10.1088/0266-5611/15/6/305
[14] Lions, J. L. and E. Magenes: Problemi ai limiti non omogenei, Part III. Ann. Sc. Norm. Sup. Pisa 15 (1961), 41 - 103. · Zbl 0115.31401
[15] Lorenzi, A. and E. Paparoni: Direct and inverse problem in the theory of ma- terials with memory. Rend. Sem. Mat. Univ. Padova 87 (1992), 105 - 138. · Zbl 0757.73018
[16] Lorenzi, A. and E. Sinestrari: An inverse problem in the theory of materials with memory. Nonlin. Anal.: Theory, Methods and Appl. 12 (1988), 1317 -1335. · Zbl 0673.45010 · doi:10.1016/0362-546X(88)90080-6
[17] Lunardi, A.: Analytic Semigroups and Optimal Regularity in Parabolic Prob- lems Prog. Nonlin. Diff. Equ. Appl.: Vol. 16). Basel - Boston - Berlin: Birkhäuser Verlag 1995.
[18] Lunardi, A. and E. Sinestrari: Fully nonlinear integro-differential equations in general Banach spaces. Math. Z. 190 (1985), 225 - 248. · Zbl 0563.45013 · doi:10.1007/BF01160461
[19] Stewart, H. B.: Generation of analytic semigroups by strongly elliptic operators under general boundary conditions. Trans. Amer. Math. Soc. 259 (1980), 299 - 310. · Zbl 0451.35033 · doi:10.2307/1998159
[20] Tanabe, H.: Equations of Evolution (Mon. & Studies in Math.: Vol. 6). London - San Francisco - Melbourne: Pitman 1979.
[21] Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators (North- Holland Math. Library: Vol. 18). Amsterdam: North-Holland 1978. · Zbl 0387.46032
[22] von Woldersdorf, L.: On identification of memory kernels in linear theory of heat conduction. Math. Models & Meth. Appl. Sci. 17 (1994), 919 - 932. · Zbl 0811.45004 · doi:10.1002/mma.1670171202
[23] von Woldersdorf, L.: Inverse problems for memory kernels in heat flow and viscoelasticity. J. Inv. Ill-Posed Problems 4 (1996), 341 - 354. · Zbl 0881.35127 · doi:10.1515/jiip.1996.4.4.341
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.