×

On interpolation with boundary conditions. (English) Zbl 0713.46048

Let \(\Omega\) be a bounded open subset in \({\mathbb{R}}^ n\) with boundary \(\partial \Omega\) of class \(C^{\infty}\); if \(\alpha\in {\mathbb{R}}\), \(1\leq p,q\leq +\infty\), consider the Besov space \(B^{\alpha}_{p,q}(\Omega)\). Let \(B=(B_ k)_{k=1,...,m}\) be a normal system of boundary operators on \(\partial \Omega\), with \(C^{\infty}\) coefficients. Define (roughly speaking) \(B^{\alpha}_{p,q,B}(\Omega)\) as the space of the elements u of \(B^{\alpha}_{p,q}(\Omega)\) such that \(B_ ku=0\) for any k such that \(\alpha\) is not less than the order of \(B_ k\) plus \(p^{-1}\). If \((.,.)_{[\theta]}\) \((0<\theta <1)\) is the complex interpolation functor, \(\alpha_ 0<\alpha_ 1\), \(1\leq p\leq +\infty\), \(1\leq q<+\infty\), \((B^{\alpha_ 0}_{p,q}(\Omega), B^{\alpha_ 1}_{p,q,B}(\Omega))_{[\theta]}= B^{\alpha}_{p,q,B}(\Omega),\) with \(\alpha =(1-\theta)\alpha_ 0+\theta \alpha_ 1\). The result is proved by adapting a method due to M. Seeley [Stud. Math. 44, 47-60 (1972; Zbl 0237.46041)]. Next, essentially using abstract properties of the real and complex interpolation methods, it is proved that, if \(\alpha_ 0<\alpha_ 1\), \(0<\theta <1\), \(1\leq p,q_ 0,q_ 1,q\leq +\infty\), the real interpolation space \((B^{\alpha_ 0}_{p,q_ 0}(\Omega), B^{\alpha_ 1}_{p,q_ 1,B}(\Omega))_{\theta,q}\) coincides with the space \(B^{\alpha}_{p,q,B}(\Omega)\), with \(\alpha =(1- \theta)\alpha_ 0+\theta \alpha_ 1\). Applying the previous results, one can show the following: let A(x,\(\partial)\) be a strongly elliptic partial differential operator of order 2m with \(C^{\infty}\) coefficients, giving rise with the boundary conditions \(B_ k\) to a regular elliptic problem in \(\Omega\). Set \(A_{NpB}\) the realization of the problem with homogeneous boundary conditions in \(W^{N,p}(\Omega)\) \((N\in {\mathbb{N}}_ 0\), \(1\leq p\leq +\infty)\) and indicate with \(D(A_{NpB})\) the domain of \(A_{NpB}\). Then, if \(0<\theta <1\), \(1\leq q\leq +\infty\), \((W^{N,p}(\Omega), D(A_{NpB}))_{\theta,q}= B^{\alpha}_{p,q,B}(\Omega)\), with \(\alpha =N+2m\theta\). These results are new in the case \(p=1.\)
In the final section extensions of the previous results to open subsets and problems with are not necessarily so regular are discussed.
Reviewer: D.Guidetti

MSC:

46M35 Abstract interpolation of topological vector spaces
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
46B70 Interpolation between normed linear spaces

Citations:

Zbl 0237.46041

References:

[1] [AT] Acquistapace, P., Terreni, B.: Hölder classes with boundary conditions as interpolation spaces. Math. Z.195, 451–471 (1987) · Zbl 0635.35024 · doi:10.1007/BF01166699
[2] [BB] Butzer, P., Behrens, H.: Semigroups of operators and approximation. (Grundlehren Math. Wiss., vol. 145) Berlin Heidelberg New York: Springer 1967
[3] [BL] Bergh, J., Löfström, J.: Interpolation spaces. An introduction. Berlin Heidelberg New York: Springer 1976 · Zbl 0344.46071
[4] [DB] Di Blasio, G.: Characterization of interpolation spaces and regularity properties for holomorphic semigroups. Semigroup Forum38, 179–187 (1989) · Zbl 0704.47032 · doi:10.1007/BF02573229
[5] [GR] Grisvard, P.: Equations differentielles abstraites. Ann. Sci. Éc. Norm. Supér, IV. Sér.2, 311–395 (1969) · Zbl 0193.43502
[6] [GUI] Guidetti, D.: On elliptic problems in Besov spaces. Math. Nach. (to appear) · Zbl 0767.46027
[7] [LU] Lunardi, A.: Interpolation spaces between domains of elliptic operators and spaces of continuous functions with applications to nonlinear parabolic problems. Math. Nachr.121, 295–318 (1985) · Zbl 0568.47035 · doi:10.1002/mana.19851210120
[8] [PEE] Peetre, J.: New thoughts on Besov spaces. Tekniska Hogskolan Lund 1976 · Zbl 0356.46038
[9] [SEE] Seeley, R.: Interpolation inL p with boundary conditions. Stud. Math. Skr.44, 47–60 (1972) · Zbl 0237.46041
[10] [STE1] Stein, E.: The characterization of functions arising as potentials II. Bull. Am. Math. Soc.68, 577–582 (1962) · doi:10.1090/S0002-9904-1962-10856-8
[11] [STE2] Stein, E.: Singular integrals and differentiability properties of functions. Princeton: Princeton University Press 1970
[12] [TAI] Taibleson, M.: On the theory of Lipschitz spaces of distributions on Euclideann-space, I: Principal properties. J. Math. Mech.13, 407–479 (1964)
[13] [TRI1] Triebel, H.: On Besov-Hardy-Sobolev spaces in domains and regular elliptic boundary value problems. The case 0<p Commun. Partial Differ. Equations3(12), 1083–1164 (1978) · Zbl 0403.35034 · doi:10.1080/03605307808820088
[14] [TR12] Triebel, H.: Fourier analysis and function spaces. (Teubner-Texte Math.) Leipzig: Teubner 1977
[15] [TRI3] Triebel, H.: Interpolation theory, function spaces, differential operators. North Hollnd 1978 · Zbl 0387.46033
[16] [TRI4] Triebel, H.: Complex interpolation and Fourier multipliers for the spacesB p, q s andF p, q s of Besov-Hardy-Sobolev type: the case 0<p 0<q Math. Z.176–4, 495–510 (1981) · Zbl 0449.42014 · doi:10.1007/BF01214760
[17] [TRI5] Triebel, H.: Theory of function spaces. (Monogr. Math., Basel) Basel Boston Stuttgart: Birkhäuser 1983
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.