×

The Biot-Savart operator for application to knot theory, fluid dynamics, and plasma physics. (English) Zbl 1006.78003

Summary: The writhing number of a curve in 3-space is the standard measure of the extent to wich the curve wraps and coils around itself; it has proved its importance for molecular biologists in the study of knotted DNA and of the enzymes which affect it. The helicity of a vector field defined on a domain in 3-space is the standard measure of the extent to which the field lines wrap and coil around one another; it plays important roles in fluid dynamics and plasma physics. The Biot-Savart operator associates with each current distribution on a given domain the restriction of its magnetic field to that domain. When the domain is simply connected, the divergence-free fields which are tangent to the boundary and which minimize energy for given helicity provide models for stable force-free magnetic fields in space and laboratory plasmas; these fields appear mathematically as the extreme eigenfields for an appropriate modification of the Biot-Savart operator. Information about these fields can be converted into bounds on the writhing number of a given piece of DNA. The purpose of this paper is to reveal new properties of the Biot-Savart operator which are useful in these applications.

MSC:

78A25 Electromagnetic theory (general)
57M25 Knots and links in the \(3\)-sphere (MSC2010)
76W05 Magnetohydrodynamics and electrohydrodynamics
Full Text: DOI

References:

[1] Călugăreanu, Rev. Math. Pures Appl. 4 pp 5– (1959)
[2] Călugăreanu, Czech. Math. J. 11 pp 588– (1961)
[3] Călugăreanu, Comm. Acad. R. P. Romine 11 pp 829– (1961)
[4] Brock Fuller, Proc. Natl. Acad. Sci. U.S.A. 68 pp 815– (1971)
[5] Woltjer, Proc. Natl. Acad. Sci. U.S.A. 44 pp 489– (1958)
[6] Moffatt, J. Fluid Mech. 35 pp 117– (1969)
[7] C. F. Gauss, ”Integral formula for linking number,” inZur Mathematischen Theorie de Electrodynamische Wirkungen, Collected Works, 2nd ed. (Koniglichen Gesellschaft des Wissenschaften, Gottingen, 1833), Vol. 5, p. 605.
[8] White, Am. J. Math. 91 pp 693– (1969)
[9] Brock Fuller, Proc. Natl. Acad. Sci. U.S.A. 75 pp 3557– (1978)
[10] Bauer, Sci. Am. 243 pp 118– (1980)
[11] Wang, Sci. Am. 247 pp 94– (1982)
[12] De Witt Sumners, ”The role of knot theory in DNA research,” inGeometry and Topology; Manifolds, Varieties, and Knots, edited by Clint McCrory and Ted Shifrin (Marcel Dekker, New York, 1987), pp. 297–318.
[13] Sumners, Math. Intelligencer 12 pp 73– (1990)
[14] Sumners, AMS Proc. of Symposia in Applied Math. 45 pp 1– (1992) · doi:10.1090/psapm/045/1196713
[15] Cantarella, Nature (London) 392 pp 237– (1998)
[16] Lomonaco, AMS Proc. Symposia Applied Math. 51 pp 145– (1996) · doi:10.1090/psapm/051/1372768
[17] Woltjer, Bull. Astron. Inst. Neth. 14 pp 39– (1958)
[18] Lundquist, Ark. Fys. 2 pp 361– (1951)
[19] Chandrasekhar, Astrophys. J. 126 pp 457– (1957)
[20] Laurence, J. Math. Phys. 32 pp 1240– (1991)
[21] Tsuji, Phys. Fluids B 3 pp 3379– (1991)
[22] G. Marsh,Force-Free Magnetic Fields–Solutions, Topology, and Applications(World Scientific, Singapore, 1996).
[23] Berger, J. Fluid Mech. 147 pp 133– (1984)
[24] Moffatt, Proc. R. Soc. London, Ser. A 439 pp 411– (1992)
[25] R. L. Ricca and H. K. Moffatt, ”The helicity of a knotted vortex filament,” inTopological Aspects of Dynamics of Fluids and Plasmas, edited by H. K. Moffat et al. (Kluwer Academic, Dordrecht, 1992), pp. 225–236. · Zbl 0789.76017
[26] Whitehead, Proc. Natl. Acad. Sci. U.S.A. 33 pp 117– (1947)
[27] Arnold, Selecta Math. Sov. 5 pp 327– (1986)
[28] J. Cantarella, D. DeTurck, and H. Gluck, ”Upper bounds for the writhing of knots and the helicity of vector fields,” inProceedings of the Conference in Honor of the 70th Birthday of Joan Birman, AMS/IP Series on Advanced Mathematics, edited by J. Gilman, X.-S. Lin, and W. Menasco (International Press, 2000). · Zbl 1006.57008
[29] Cantarella, Phys. Plasmas 7 pp 2766– (2000)
[30] J. Cantarella, D. DeTurck, and H. Gluck, ”The principal eigenvalue of the curl operator on the flat torus,” J. Math. Phys. (to be submitted). · Zbl 1006.57008
[31] Cantarella, J. Math. Phys. 41 pp 5615– (2000)
[32] J. Cantarella, ”Topological structure of stable plasma flows,” Ph.D. thesis, University of Pennsylvania, 1999.
[33] J. Cantarella, D. DeTurck, H. Gluck, and M. Teytel, ”Influence of geometry and topology on helicity,” inMagnetic Helicity in Space and Laboratory Plasmas, edited by M. Brown, R. Canfield, and A. Pevtsov (American Geophysical Union, Washington, D.C., 1999), Geophysical Monograph Vol. 111, pp. 17–24.
[34] Yoshida, Math. Z. 204 pp 235– (1990)
[35] Yoshida, Prog. Theor. Phys. 86 pp 45– (1991)
[36] H. K. Moffatt,Magnetic Field Generation in Electrically Conducting Liquids(Cambridge University Press, Cambridge, 1978).
[37] S. Childress, ”Fast dynamo theory,” inTopological Aspects of the Dynamics of Fluids and Plasmas, edited by H. K. Moffatt et al. (Kluwer Academic, Dordrecht, 1992).
[38] H. K. Moffatt and A. Tsinober,Topological Fluid Mechanics(Cambridge University Press, Cambridge, 1990). · Zbl 0713.76010
[39] H. K. Moffatt, G. M. Zaslavsky, P. Comte, and M. Tabor,Topological Aspects of the Dynamics of Fluids and Plasmas(Kluwer Academic, Dordrecht, 1992). · Zbl 0777.00043
[40] Etnyre, Nonlinearity 13 pp 441– (2000)
[41] Weyl, Duke Math. J. 7 pp 411– (1940)
[42] Friedrichs, Commun. Pure Appl. Math. 8 pp 551– (1955)
[43] A. A. Blank, K. O. Friedrichs and H. Grad, ”Theory of Maxwell’s equations without displacement current. Theory on magnetohydrodynamics V,” AEC Research and Development Report No. MHS , NYO-6486, 1957.
[44] G. Schwarz,Hodge Decomposition: A Method for Solving Boundary Value Problems, Lecture Notes in Mathematics, No. 1607 (Springer-Verlag, Berlin, 1995). · Zbl 0828.58002
[45] J. Cantarella, D. DeTurck, and H. Gluck, ”Hodge decomposition of vector fields on bounded domains in 3-space,” Am. Math. Mon. (to appear). · Zbl 1038.53017
[46] D. Griffiths,Introduction to Electrodynamics, 2nd ed. (Prentice–Hall, New Jersey, 1989).
[47] G. Folland,Introduction to Partial Differential Equations(Princeton University Press, Princeton, 1995). · Zbl 0841.35001
[48] R. Zimmer,Essential Results of Functional Analysis(University of Chicago Press, Chicago, 1990). · Zbl 0708.46001
[49] R. A. R. Tricker,Early Electrodynamics: The First Law of Circulation(Pergamon, Oxford, 1965).
[50] H. C. Oersted, ”Experiments on the effect of a current of electricity on the magnetic needle,” Thomson’s Annals of Philosophy (October, 1820).
[51] Biot, Ann. Chim. Phys. 15 pp 222– (1820)
[52] J.-B. Biot,Precise Elementaire de Physique Experimentale, 3rd ed. (Chez Deterville, Paris, 1820), Vol. II.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.