×

Orienting polyhedral parts by pushing. (English) Zbl 0991.68123

Summary: A common task in automated manufacturing processes is to orient parts prior to assembly. We consider sensorless orientation of an asymmetric polyhedral part by a sequence of push actions, and show that is it possible to move any such part from an unknown initial orientation into a known final orientation if these actions are performed by a jaw consisting of two orthogonal planes. We also show how to compute an orienting sequence of push actions.
We propose a three-dimensional generalization of conveyor belts with fences consisting of a sequence of tilted plates with curved tips; each of the plates contains a sequence of fences. We show that it is possible to compute a set-up of plates and fences for any given asymmetric polyhedral part such that the part gets oriented on its descent along plates and fences.

MSC:

68U05 Computer graphics; computational geometry (digital and algorithmic aspects)
68T40 Artificial intelligence for robotics
Full Text: DOI

References:

[1] Akella, S.; Huang, W.; Lynch, K. M.; Mason, M. T., Parts feeding on a conveyor with a one joint robot, Algorithmica, 26, 313-344 (2000) · Zbl 1002.93038
[2] Akella, S.; Mason, M. T., Posing polygonal objects in the plane by pushing, (IEEE International Conference on Robotics and Automation (ICRA) (1992)), 2255-2262
[3] Barequet, G., DCEL: A polyhedral database and programming environment, Internat. J. Comput. Geom. Appl., 8, 619-636 (1998)
[4] Berretty, R.-P.; Goldberg, K. Y.; Overmars, M. H.; van der Stappen, A. F., On fence design and the complexity of push plan for orienting parts, (Annual ACM Symposium on Computational Geometry (1997)), 21-29
[5] Berretty, R.-P.; Goldberg, K. Y.; Overmars, M. H.; van der Stappen, A. F., Algorithms for fence design, (Robotics: The Algorithmic Perspective (1998), Peters: Peters Natick, MA), 279-295 · Zbl 0948.70511
[6] Berretty, R.-P.; Goldberg, K.; Overmars, M. H.; van der Stappen, A. F., Computing fence designs for orienting parts, Computational Geometry, 10, 4, 249-262 (1998) · Zbl 0907.68220
[7] Böhringer, K.-F.; Bhatt, V.; Donald, B. R.; Goldberg, K. Y., Algorithms for sensorless manipulation using a vibrating surface, Algorithmica, 26, 389-429 (2000)
[8] Boothroyd, G.; Dewhurst, P., Design for Assembly - A Designers Handbook (1983), Department of Mechanical Engineering, University of Massachusetts: Department of Mechanical Engineering, University of Massachusetts Amherst, MA
[9] Boothroyd, G.; Poli, C.; Murch, L., Automatic Assembly (1982), Marcel Dekker: Marcel Dekker New York
[10] Brost, R., Automatic grasp planning in presence of uncertainty, Internat. J. Robotics Res., 7, 1, 3-17 (1988)
[11] Canny, J.; Goldberg, K. Y., Risc for industrial robotics: Recent results and open problems, (IEEE International Conference on Robotics and Automation (ICRA) (1994)), 1951-1958
[12] Chen, Y.-B.; Ierardi, D. J., The complexity of oblivious plans for orienting and distinguishing polygonal parts, Algorithmica, 14, 367-397 (1995) · Zbl 0830.68062
[13] de Berg, M.; Bose, P.; Dobrint, K.; van Kreveld, M.; Overmars, M.; de Groot, M.; Roos, T.; Snoeyink, J.; Yu, S., The complexity of rivers in triangulated terrains, (Canadian Conference on Computational Geometry (1996)), 325-330
[14] de Berg, M.; van Kreveld, M.; Overmars, M. H.; Schwarzkopf, O., Computational Geometry: Algorithms and Applications (1997), Springer: Springer Berlin · Zbl 0877.68001
[15] Eppstein, D., Reset sequences for monotonic automata, SIAM J. Comput., 19, 5, 500-510 (1990) · Zbl 0698.68058
[16] Goldberg, K. Y., Orienting polygonal parts without sensors, Algorithmica, 10, 2, 201-225 (1993) · Zbl 0777.68104
[17] Lynch, K. M., Inexpensive conveyor-based parts feeding, Assembly Autom. J., 19, 3, 209-215 (1999)
[18] Lynch, K. M.; Mason, M. T., Stable pushing: Mechanics, controllability, and planning, Internat. J. Robotics Res., 15, 6, 533-556 (1996)
[19] M.T. Mason, Manipulator grasping and pushing operations, Ph.D. Thesis, MIT, 1982. Published in: Robot Hands and the Mechanics of Manipulation, MIT Press, Cambridge, 1985; M.T. Mason, Manipulator grasping and pushing operations, Ph.D. Thesis, MIT, 1982. Published in: Robot Hands and the Mechanics of Manipulation, MIT Press, Cambridge, 1985
[20] Peshkin, M. A.; Sanderson, A. C., The motion of a pushed sliding workpiece, IEEE J. Robotics Autom., 4, 6, 569-598 (1988)
[21] Peshkin, M. A.; Sanderson, A. C., Planning robotic manipulation strategies for workpieces that slide, IEEE J. Robotics Autom., 696-701 (1988)
[22] Ponce, J.; Sullivan, S.; Sudsang, A.; Boissonnat, J.-D.; Merlet, J.-P., On computing four-finger equilibrium and force-closure grasps of polyhedral objects, Internat. J. Robotics Res., 16, 1, 13-35 (1997)
[23] Preparata, F. P.; Shamos, M. I., Computational Geometry: An Introduction (1990), Springer: Springer Berlin
[24] Rao, A.; Kriegman, D.; Goldberg, K. Y., Complete algorithms for reorienting polyhedral parts using a pivoting gripper, IEEE Trans. Robotics Autom., 12, 2, 331-342 (1996)
[25] J.A. Wiegley, Sorting convex polygonal parts without sensors of a conveyor, Ph.D. Thesis, Faculty of the Graduate School, University of Southern California, 1998; J.A. Wiegley, Sorting convex polygonal parts without sensors of a conveyor, Ph.D. Thesis, Faculty of the Graduate School, University of Southern California, 1998
[26] Wiegley, J. A.; Goldberg, K. Y.; Peshkin, M.; Brokowski, M., A complete algorithm for designing passive fences to orient parts, Assembly Autom., 17, 2, 129-136 (1997)
[27] Zhang, T.; Smith, G.; Berretty, R.-P.; Overmars, M. H.; Goldberg, K. Y., The toppling graph: Designing pin sequences for part feeding, (IEEE International Conference on Robotics and Automation (ICRA), Vol. 1 (2000)), 139-146
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.