×

Double centralizer properties, dominant dimension, and tilting modules. (English) Zbl 0980.17003

This very interesting paper develops a general machinery for establishing double centralizer properties for several classes of associative algebras. In other words, this gives some sufficient conditions for a finite-dimensional associative algebra, \(A\), to coincide with the so-called double centralizer algebra \(\text{End}(M_{\text{End}_A(M)})\) for some \(M\in A\)-mod. The classical part of this theory, developed by H. Tachikawa [Quasi-Frobenius rings and generalizations. Lect. Notes Math. 351, Springer, Berlin (1973; Zbl 0271.16004)], guarantees the existence of the double centralizer property for algebras of dominant dimension at least two with respect to a faithful projective-injective module. In the paper under review the authors extend this result to quasi-hereditary algebras of dominant dimension at least two with respect to some (not necessarily full) tilting module. As an outcome a rather short and free from technicalities proof for Soergel’s double centralizer theorem [W. Soergel, J. Am. Math. Soc. 3, 421-445 (1990; Zbl 0747.17008)], relating category \(\mathcal O\) with the coinvariant algebra, is given and a generalization of this theorem on certain parabolic analogues for \(\mathcal O\) is obtained. Both results use only a short list of easy properties of \(\mathcal O\) and do not require any invariant theory. Moreover, the authors also reprove the classical Schur-Weyl duality theorem for Schur algebras \(S_k(n,r)\) as well as the corresponding result for quantized Schur algebras \(S_q(n,r)\). The case \(n\geq r\) is handled using Tachikawa’s results, whereas the case \(n<r\) already requires the corresponding generalization for tilting modules.

MSC:

17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
16G10 Representations of associative Artinian rings
20G05 Representation theory for linear algebraic groups
16L60 Quasi-Frobenius rings
20C08 Hecke algebras and their representations

References:

[1] Auslander, M.; Reiten, I., Applications of contravariantly finite subcategories, Adv. Math., 86, 111-152 (1991) · Zbl 0774.16006
[2] Auslander, M.; Solberg, Ø., Relative homology and representation theory. III. Cotilting modules and Wedderburn correspondences, Comm. Algebra, 21, 3081-3097 (1993) · Zbl 0792.16019
[3] Bernstein, I. N.; Gelfand, I. M.; Gelfand, S. I., A category of \(g\)-modules, Funct. Anal. Appl., 10, 87-92 (1976) · Zbl 0339.22009
[4] Cline, E.; Parshall, B.; Scott, L., Finite-dimensional algebras and highest weight categories, J. Reine Angew. Math., 391, 85-99 (1988) · Zbl 0657.18005
[5] de Concini, C.; Procesi, C., A characteristic free approach to invariant theory, Adv. Math., 21, 330-354 (1976) · Zbl 0347.20025
[6] Curtis, C.; Reiner, I., Representation Theory of Finite Groups and Associative Algebras (1962), Wiley: Wiley New York · Zbl 0131.25601
[7] Dipper, R.; James, G., The \(q\)-Schur algebra, Proc. London Math. Soc., 59, 23-50 (1989) · Zbl 0711.20007
[8] Diximier, J., Enveloping Algebras. Enveloping Algebras, Am. Math. Soc. Graduate Studies in Mathematics, 11 (1996), Am. Math. Soc: Am. Math. Soc Providence · Zbl 0867.17001
[9] Donkin, S., The \(q\)-Schur Algebra (1998), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0927.20003
[10] Du, J., A note on quantized Weyl reciprocity at roots of unity, Algebra Colloq., 2, 363-372 (1995) · Zbl 0855.17006
[11] Du, J.; Parshall, B.; Scott, L., Quantum Weyl reciprocity and tilting modules, Comm. Math. Phys., 195, 321-352 (1998) · Zbl 0936.16008
[12] Erdmann, K., Schur algebras of finite type, Quart. J. Math. Oxford, 44, 17-41 (1993) · Zbl 0832.16011
[13] V. Futorny, S. König, and, V. Mazorchuk, Categories of induced modules and standardly stratified algebras, Algebra Repr. Theory, to appear.; V. Futorny, S. König, and, V. Mazorchuk, Categories of induced modules and standardly stratified algebras, Algebra Repr. Theory, to appear. · Zbl 1031.17008
[14] Futorny, V.; König, S.; Mazorchuk, V., A combinatorial description of blocks in \(O\) associated with \(sl(2)\) induction, J. Algebra, 231, 86-103 (2000) · Zbl 1018.17004
[15] Futorny, V.; König, S.; Mazorchuk, V., \(S\)-subcategories in \(O\), Manuscripta Math., 102, 487-503 (2000) · Zbl 1018.17005
[16] Goodearl, K., Nonsingular rings and modules, Ring Theory (1976), Dekker: Dekker New York · Zbl 0336.16001
[17] Green, J. A., Polynomial Representations of \(GL_n\). Polynomial Representations of \(GL_n\), Springer Lecture Notes in Mathematics, 830 (1980) · Zbl 0451.20037
[18] Jantzen, J. C., Einhüllende Algebren Halbeinfacher Lie-Algebren. Einhüllende Algebren Halbeinfacher Lie-Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 3 (1983), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0541.17001
[19] Jimbo, M., A \(q\)-analogue of \(U(gl(N+1))\), Hecke algebra, and the Yang Baxter equation, Lett. Math. Phys., 11, 247-252 (1986) · Zbl 0602.17005
[20] Ringel, C. M., The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences, Math. Z., 208, 209-223 (1991) · Zbl 0725.16011
[21] Soergel, W., Kategorie \(O\), perverse Garben und Moduln über den Koinvarianten zur Weylgruppe, J. Amer. Math. Soc., 3, 421-445 (1990) · Zbl 0747.17008
[22] Tachikawa, H., On left QF-3 rings, Pacific J. Math., 32, 255-268 (1970) · Zbl 0235.16011
[23] Tachikawa, H., Quasi-Frobenius Rings and Generalizations. Quasi-Frobenius Rings and Generalizations, Springer Lecture Notes in Mathematics, 351 (1973), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0271.16004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.