×

Geometry of directing modules over tame algebras. (English) Zbl 0965.16009

Let \(A\) be a finite dimensional associative \(K\)-algebra with an identity over an algebraically closed field \(K\), let \(\text{mod}_A\) be the category of all finite dimensional left \(A\)-modules, and let \(\text{mod}_A({\mathbf d})\) be the module variety of \(A\)-modules of dimension \(\mathbf d\), where \(\mathbf d\) is a non-negative vector in the Grothendieck group \(K_0(A)\) of \(A\) [see A. Skowroński, G. Zwara, Contemp. Math. 229, 343-356 (1998; Zbl 0955.16014)].
The main aim of the paper is to describe conditions under which the module variety \(\text{mod}_A({\mathbf d})\) for the dimension-vector \(\mathbf d\) of arbitrary directing modules over the tame algebra \(A\) is normal, smooth, complete intersection, or it has other specific geometric properties. First some preliminary material concerning the theory of tame tilted algebras and their module categories is given. Then the irreducible components of \(\text{mod}_A({\mathbf d})\) and its maximal \(G({\mathbf d})\)-orbits are described, where \(A\) is a tame algebra, \(\mathbf d\) is the dimension-vector of a directing (indecomposable) \(A\)-module, \(G({\mathbf d})\) is the product of general linear groups acting on the affine variety \(\text{mod}_A({\mathbf d})\). Among other things it is proved that \(\text{mod}_A({\mathbf d})\) is a complete intersection. In conclusion some interesting examples are considered. The authors remark that the main results of this paper can be applied to the study of geometry of modules over tame quasi-tilted algebras [G. Bobiński, A. Skowroński, Colloq. Math. 79, No. 1, 85-118 (1999; Zbl 0994.16009)].

MSC:

16G60 Representation type (finite, tame, wild, etc.) of associative algebras
16G70 Auslander-Reiten sequences (almost split sequences) and Auslander-Reiten quivers
20G20 Linear algebraic groups over the reals, the complexes, the quaternions
14L30 Group actions on varieties or schemes (quotients)
14M10 Complete intersections
14M05 Varieties defined by ring conditions (factorial, Cohen-Macaulay, seminormal)
16P10 Finite rings and finite-dimensional associative algebras
16D90 Module categories in associative algebras
Full Text: DOI

References:

[1] Bobiński, G.; Skowroński, A., Geometry of modules over tame quasi-tilted algebras, Colloq. Math., 79, 85-118 (1999) · Zbl 0994.16009
[3] Bongartz, K., Algebras and quadratic forms, J. London Math. Soc., 28, 461-469 (1983) · Zbl 0532.16020
[4] Bongartz, K., Critical simply connected algebras, Manuscripta Math., 46, 117-136 (1984) · Zbl 0537.16024
[5] Bongartz, K., A geometric version of the Morita equivalence, J. Algebra, 139, 159-171 (1991) · Zbl 0787.16011
[6] Bongartz, K., On degenerations and extensions of finite dimensional modules, Adv. Math., 121, 245-287 (1996) · Zbl 0862.16007
[7] Eisenbud, D., Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics (1996), Springer-Verlag: Springer-Verlag New York/Berlin
[8] Gabriel, P., Finite representation type is open, Lecture Notes in Math. (1975), Springer-Verlag: Springer-Verlag New York/Berlin, p. 132-155 · Zbl 0313.16034
[9] Gabriel, P., Auslander-Reiten sequences and representation-finite algebras, Lecture Notes in Math. (1979), Springer-Verlag: Springer-Verlag New York/Berlin, p. 1-71 · Zbl 0445.16023
[10] Happel, D.; Reiten, I.; Smalø, S. O., Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc., 575 (1966) · Zbl 0849.16011
[11] Happel, D.; Vossieck, D., Minimal algebras of infinite representation type with preprojective component, Manuscripta Math., 42, 221-243 (1983) · Zbl 0516.16023
[12] Hartshorn, R., Introduction to Algebraic Geometry (1997), Springer-Verlag: Springer-Verlag New York/Berlin
[13] Kerner, O., Tilting wild algebras, J. London Math. Soc., 39, 29-47 (1989) · Zbl 0675.16013
[14] Kraft, H., Geometrische Methoden in der Invariantentheorie (1984), Vieweg: Vieweg Wiesbaden · Zbl 0569.14003
[15] Kraft, H., Geometric methods in representation theory, Lecture Notes in Math. (1981), Springer-Verlag: Springer-Verlag New York/Berlin, p. 180-258 · Zbl 0517.14016
[16] Liu, S., Tilted algebras and generalized standard Auslander-Reiten components, Arch. Math., 61, 12-19 (1993) · Zbl 0809.16015
[17] de la Peña, J. A., Tame algebras with sincere directing modules, J. Algebra, 161, 171-185 (1993) · Zbl 0808.16018
[18] de la Peña, J. A., The families of two-parametric tame algebras with sincere directing modules, CMS Conf. Proc. (1993), Amer. Math. Soc: Amer. Math. Soc Providence, p. 361-392 · Zbl 0799.16016
[19] de la Peña, J. A.; Skowroński, A., Geometric and homological characterizations of polynomial growth strongly simply connected algebras, Invent. Math., 126, 287-296 (1986) · Zbl 0883.16007
[20] Ringel, C. M., Tame algebras and integral quadratic forms, Lecture Notes in Math. (1984), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0546.16013
[21] Shafarevich, I. R., Basic algebraic geometry, Graduate Texts in Math. (1977), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0362.14001
[22] Skowroński, A., Tame quasi-tilted algebras, J. Algebra, 203, 470-490 (1998) · Zbl 0908.16013
[23] Skowroński, A., Generalized standard Auslander-Reiten components without oriented cycles, Osaka J. Math., 30, 515-527 (1993) · Zbl 0818.16017
[24] Skowroński, A.; Zwara, G., Degenerations for indecomposable modules and tame algebras, Ann. Sci. École Norm. Sup., 31, 153-180 (1998) · Zbl 0915.16011
[25] Voigt, D., Endliche algebraichen Gruppen, Lecture Notes in Math. (1977), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0374.14010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.