×

Parabolic singular integrals of Calderón-type, rough operators, and caloric layer potentials. (English) Zbl 0941.42006

This paper presents results about parabolic singular integrals with rough kernels that extend previous work of J. Lewis and M. Murray on layer potentials for the heat equation in time-varying domains. The precise relations between the Lewis-Murray work and the author’s work was described in my review of [S. Hofmann, Contemp. Math. 189, 251-285 (1995)] in Zbl 0883.42015. The techniques used here are similar to those of the latter paper, where the author says “Indeed, we had found the results of the present paper first, and then had pushed those methods to include the “nonlinear” operators of the paper under review”. The results are too technical to be described in detail but again involve replacement of the \(T1\) theorem via Littlewood-Paley estimates and a quasi-Carleson measure condition. The operators considered include nonlinear ones but the commutators are more restricted, satisfying a cancellation condition.

MSC:

42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
42B25 Maximal functions, Littlewood-Paley theory

Citations:

Zbl 0883.42015
Full Text: DOI

References:

[1] A. P. Calderón, Commutators of singular integral operators , Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1092-1099. · Zbl 0151.16901 · doi:10.1073/pnas.53.5.1092
[2] A. P. Calderón, Cauchy integrals on Lipschitz curves and related operators , Proc. Nat. Acad. Sci. U.S.A. 74 (1977), no. 4, 1324-1327. JSTOR: · Zbl 0373.44003 · doi:10.1073/pnas.74.4.1324
[3] A. P. Calderón and A. Zygmund, On singular integrals with variable kernels , Applicable Anal. 7 (1977/78), no. 3, 221-238. · Zbl 0451.42012 · doi:10.1080/00036817808839193
[4] M. Christ, Lectures on singular integral operators , CBMS Regional Conference Series in Mathematics, vol. 77, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1990. · Zbl 0745.42008
[5] M. Christ and J.-L. Journe, Polynomial growth estimates for multilinear singular integral operators , Acta Math. 159 (1987), no. 1-2, 51-80. · Zbl 0645.42017 · doi:10.1007/BF02392554
[6] M. Christ and M. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation , J. Funct. Anal. 100 (1991), no. 1, 87-109. · Zbl 0743.35067 · doi:10.1016/0022-1236(91)90103-C
[7] J. Cohen, A sharp estimate for a multilinear singular integral in \(\mathbf R\spn\) , Indiana Univ. Math. J. 30 (1981), no. 5, 693-702. · Zbl 0596.42004 · doi:10.1512/iumj.1981.30.30053
[8] R. Coifman, G. David, and Y. Meyer, La solution des conjecture de Calderón , Adv. in Math. 48 (1983), no. 2, 144-148. · Zbl 0518.42024 · doi:10.1016/0001-8708(83)90084-1
[9] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals , Studia Math. 51 (1974), 241-250. · Zbl 0291.44007
[10] R. Coifman, A. McIntosh, and Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur \(L^2\) pour les courbes lipschitziennes , Ann. of Math. (2) 116 (1982), no. 2, 361-387. JSTOR: · Zbl 0497.42012 · doi:10.2307/2007065
[11] R. Coifman and Y. Meyer, Nonlinear harmonic analysis, operator theory and P.D.E , Beijing lectures in harmonic analysis (Beijing, 1984), Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 3-45. · Zbl 0623.47052
[12] R. Coifman and R. Rochberg, Another characterization of BMO , Proc. Amer. Math. Soc. 79 (1980), no. 2, 249-254. JSTOR: · Zbl 0432.42016 · doi:10.2307/2043245
[13] R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes , Springer-Verlag, Berlin, 1971. · Zbl 0224.43006 · doi:10.1007/BFb0058946
[14] G. David, Wavelets and singular integrals on curves and surfaces , Lecture Notes in Mathematics, vol. 1465, Springer-Verlag, Berlin, 1991. · Zbl 0764.42019 · doi:10.1007/BFb0091544
[15] G. David and J.-L. Journe, A boundedness criterion for generalized Calderón-Zygmund operators , Ann. of Math. (2) 120 (1984), no. 2, 371-397. JSTOR: · Zbl 0567.47025 · doi:10.2307/2006946
[16] G. David, J.-L. Journe, and S. Semmes, Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation , Rev. Mat. Iberoamericana 1 (1985), no. 4, 1-56. · Zbl 0604.42014 · doi:10.4171/RMI/17
[17] J. Dorronsoro, A characterization of potential spaces , Proc. Amer. Math. Soc. 95 (1985), no. 1, 21-31. · Zbl 0577.46035 · doi:10.2307/2045567
[18] J. Duoandikoetxea and J. L. Rubio de Francia, Maximal and singular integral operators via Fourier transform estimates , Invent. Math. 84 (1986), no. 3, 541-561. · Zbl 0568.42012 · doi:10.1007/BF01388746
[19] E. B. Fabes and N. M. Rivière, Symbolic calculus of kernels with mixed homogeneity , Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), Amer. Math. Soc., Providence, R.I., 1967, pp. 106-127. · Zbl 0174.43202
[20] E. B. Fabes and N. M. Riviere, Singular intervals with mixed homogeneity , Studia Math. 27 (1966), 19-38. · Zbl 0161.32403
[21] X. Fang Ph.D. thesis, Yale University, 1990.
[22] C. Fefferman and E. M. Stein, \(H\spp\) spaces of several variables , Acta Math. 129 (1972), no. 3-4, 137-193. · Zbl 0257.46078 · doi:10.1007/BF02392215
[23] J. García-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics , North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. · Zbl 0578.46046
[24] S. Hofmann, Boundedness criteria for rough singular integrals , Proc. London Math. Soc. (3) 70 (1995), no. 2, 386-410. · Zbl 0831.42011 · doi:10.1112/plms/s3-70.2.386
[25] S. Hofmann, A characterization of commutators of parabolic singular integrals , Fourier analysis and partial differential equations (Miraflores de la Sierra, 1992), Stud. Adv. Math., CRC, Boca Raton, FL, 1995, pp. 195-210. · Zbl 1039.42500
[26] S. Hofmann, Weighted norm inequalities and vector valued inequalities for certain rough operators , Indiana Univ. Math. J. 42 (1993), no. 1, 1-14. · Zbl 0804.42010 · doi:10.1512/iumj.1993.42.42001
[27] S. Hofmann, On singular integrals of Calderón-type in \(\mathbf R^ n\), and BMO , Rev. Mat. Iberoamericana 10 (1994), no. 3, 467-505. · Zbl 0874.42011 · doi:10.4171/RMI/159
[28] B. F. Jones, A class of singular integrals , Amer. J. Math. 86 (1964), 441-462. JSTOR: · Zbl 0123.08501 · doi:10.2307/2373175
[29] P. Jones, Square functions, Cauchy integrals, analytic capacity, and harmonic measure , Harmonic analysis and partial differential equations (El Escorial, 1987), Lecture Notes in Math., vol. 1384, Springer, Berlin, 1989, pp. 24-68. · Zbl 0675.30029 · doi:10.1007/BFb0086793
[30] J.-L. Journé, Calderón-Zygmund operators, pseudodifferential operators and the Cauchy integral of Calderón , Lecture Notes in Mathematics, vol. 994, Springer-Verlag, Berlin, 1983. · Zbl 0508.42021
[31] T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations , Comm. Pure Appl. Math. 41 (1988), no. 7, 891-907. · Zbl 0671.35066 · doi:10.1002/cpa.3160410704
[32] P. G. Lemarie, Algèbres d’opérateurs et semi-groupes de Poisson sur un espace de nature homogène , Publications Mathématiques d’Orsay [Mathematical Publications of Orsay], vol. 84, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984. · Zbl 0598.58045
[33] J. L. Lewis and M. A. M. Murray, The method of layer potentials for the Heat Equation in Time-Varying Domains , Mem. Amer. Math. Soc. 114 (1995), no. 545, viii+157. · Zbl 0826.35041
[34] J. L. Lewis and M. A. M. Murray, The method of layer potentials for the heat equation in time-varying domains, II: The David buildup scheme , · Zbl 0826.35041
[35] J. L. Lewis and M. A. M. Murray, Regularity properties of commutators and layer potentials associated to the heat equation , Trans. Amer. Math. Soc. 328 (1991), no. 2, 815-842. · Zbl 0780.35049 · doi:10.2307/2001805
[36] N. M. Rivière, Singular integrals and multiplier operators , Ark. Mat. 9 (1971), 243-278. · Zbl 0244.42024 · doi:10.1007/BF02383650
[37] E. M. Stein, Singular integrals and differentiability properties of functions , Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. · Zbl 0207.13501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.