×

Modular invariance, lattice field theories, and finite size corrections. (English) Zbl 0932.60092

Summary: We obtain the exact partition function for a lattice Gaussian model where the site degrees of freedom are sections of a \(U(1)\) bundle over a triangular lattice which globally forms a torus, with three independent nearest neighbour interactions in the different lattice directions. We find that in the scaling limit, even off criticality, the finite size contribution is invariant under the double cover of the modular group. Demanding that the singular part of the bulk contribution be similarly invariant provides a natural method of identifying this contribution. The origin of this symmetry is shown to be coordinate invariance of the continuum microscopic energy functional together with the discrete symmetries of parity and global space inversion. We similarly find the exact scaling function for the two-dimensional Ising model and by working with three independent lattice couplings access the full range of the modular parameter which we identify in terms of the underlying lattice couplings. \(\copyright\) Academic Press.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
81T25 Quantum field theory on lattices
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
81T27 Continuum limits in quantum field theory
11Z05 Miscellaneous applications of number theory

References:

[1] Fisher, M. E.: Critical phenomena, proc. 51st enrico Fermi summer school, varena. (1972)
[2] Barber, M. N.: Phase transitions and critical phenomena. (1983) · Zbl 0519.73009
[3] Connor, D. O’; Stephens, C. R.: Int. J. Mod. phys. A. 9, 2805 (1994)
[4] Dotsenko, V. S.; Fateev, V. A.: Nucl. phys. B. 240, 312 (1984)
[5] Fisher, M. E.; Barber, M. N.; Jasnow, D.: Phys. rev. A. 8, 1111 (1973)
[6] Chakravarty, S.: Phys. rev. Lett.. 66, 481 (1991)
[7] Brézin, E.; Korutcheva, E.; Jolicoeur, Th.; Zinn-Justin, J.: J. stat. Phys.. 70, 583 (1993)
[8] Allen, S.; Pathria, P. K.: J. phys. A. 26, 6797 (1993) · Zbl 0787.40004
[9] Allen, S.; Pathria, P. K.: Phys. rev. B. 50, 6765 (1994)
[10] Allen, S.: J. stat. Phys.. 79, 165 (1995)
[11] Cardy, J.: Nucl. phys. B. 270, 186 (1986)
[12] Nash, C.; Connor, D. O’: Phys. rev. Lett.. 76, 1196 (1996)
[13] Fan, C.; Wu, F. Y.: Phys. rev. B. 2, 723 (1970)
[14] Gradshteyn, I. S.; Ryzhik, I. M.: Tables of integrals series and products. (1980) · Zbl 0521.33001
[15] Whittaker, E. T.; Watson, G. N.: A course of modern analysis. (1927) · JFM 53.0180.04
[16] Eguchi, T.; Ooguri, H.: Nucl. phys. B. 282, 308 (1987)
[17] Nash, C.: Differential topology and quantum field theory. (1991) · Zbl 0752.57001
[18] Blöte, H. W. J.; Cardy, J.; Nightingale, M. P.: Phys. rev. Lett.. 56, 742 (1986)
[19] Zamolodchikov, A. B.: JETP lett.. 43, 730 (1986)
[20] Priezzhev, V. B.: Sov. phys. Usp.. 28, 1125 (1985)
[21] Green, H. S.; Hurst, C. A.: Order disorder phenomena. Monographs in statistical physics 5 (1964) · Zbl 0138.22301
[22] Mccoy, B. M.; Wu, T. T.: The two dimensional Ising model. (1973) · Zbl 1094.82500
[23] Kastelyn, P. W.: J. math. Phys.. 4, 287 (1963)
[24] Ferdinand, A. E.; Fisher, M. E.: Phys. rev.. 185, 832 (1969)
[25] Stephenson, J.: J. math. Phys.. 5, 1009 (1964)
[26] Itzykson, C.; Drouffe, J.: Statistical field theory. (1989) · Zbl 0825.81001
[27] Patrick, A. E.: J. stat. Phys.. 72, 665 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.