×

Analytical evaluation of a class of phase-modulated lattice sums. (English) Zbl 0787.40004

Investigations (by the authors and others) of finite-size effects in systems undergoing phase transitions, and more particularly in the study of the temperature dependence of various thermodynamic properties of a spherical model of ferromagnetism confined to a restricted geometry, lead to a consideration of the lattice sums \[ {\mathcal K}_{\underline\tau}(\nu \mid m;y):=\mathop {\sum}_{\mathbf q}'\cos(2 \pi {\mathbf q} \cdot\underline\tau)(yq)^{-\nu}K_ \nu(2yq), \] where \({\mathbf q}:=(q_ 1,\dots,q_ m) \in \mathbb{Z}^ m\), \(q:=\| {\mathbf q} \|: =(\sum^ m_ 1 q^ 2_ j )^{1/2}\), \(\tau:=(\tau_ 1,\dots,\underline\tau_ m) \in \mathbb{R}^ m\) with \(0 \leq \tau_ j \leq {1 \over 2}\) \((j=1, \dots,m)\), \(y\) is a real parameter, \(K_ \nu(\cdot)\) are modified Bessel functions, and \(\sum'\) runs over all integral components of \({\mathbf q}\) with the exception of \({\mathbf q}= \text{ \textbf{0} }\). The cases \(\tau=\mathbf{0}\) (previously considered by the authors) and \(\underline\tau=(1/2,\dots,1/2)\) have particular physical significance. The sum \({\mathcal K}_{\underline\tau}\) is evaluated (making use of the Poisson summation formula) in terms of simplified summations and constants \(D_{\underline\tau}(\nu \mid m)\) which are explicitly evaluated for selected \(\underline\tau\) and \(m\), and for which otherwise some selected numerical evaluations are given. It is necessary to consider the summations with \(\nu<1\) \((\nu \neq 0)\), \(\nu>1\), separately and (as might be expected with Bessel functions) some simplifications ensue if either \(\nu\) is an integer, or half an odd integer.

MSC:

40B05 Multiple sequences and series
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
82B26 Phase transitions (general) in equilibrium statistical mechanics
Full Text: DOI

References:

[1] DOI: 10.1088/0305-4470/22/11/026 · Zbl 0744.11047 · doi:10.1088/0305-4470/22/11/026
[2] DOI: 10.1016/0003-4916(73)90409-0 · doi:10.1016/0003-4916(73)90409-0
[3] DOI: 10.1103/PhysRevA.8.1111 · doi:10.1103/PhysRevA.8.1111
[4] DOI: 10.1103/PhysRevB.32.4618 · doi:10.1103/PhysRevB.32.4618
[5] DOI: 10.1103/PhysRevB.33.6415 · doi:10.1103/PhysRevB.33.6415
[6] DOI: 10.1088/0305-4470/21/4/007 · doi:10.1088/0305-4470/21/4/007
[7] DOI: 10.1088/0305-4470/25/4/010 · doi:10.1088/0305-4470/25/4/010
[8] DOI: 10.1088/0305-4470/9/9/004 · doi:10.1088/0305-4470/9/9/004
[9] DOI: 10.1088/0305-4470/7/13/011 · doi:10.1088/0305-4470/7/13/011
[10] DOI: 10.1063/1.1666331 · Zbl 0255.65002 · doi:10.1063/1.1666331
[11] DOI: 10.1088/0305-4470/8/11/008 · doi:10.1088/0305-4470/8/11/008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.