×

A method for solving contact problems. (English) Zbl 0914.73048

Summary: We present a method to solve problems involving contact mechanics. The basic idea is related to a special modification of the unconstrained functional to include inequality constraints. The modification is constructed in such a way that minimal point of the unconstrained potential can be exactly shifted to the constraint limit. Moreover, the functional remains smooth and the admissible range of the solution is not restricted. The solution search process with iterative techniques takes advantage from these features. In fact, due to a better control of gap status changes, a more stable solution path with respect to other methods is usually obtained. The characteristics of the method are evidenced and compared to other classical techniques, like penalty and barrier methods. The finite element discretization of the proposed method is included, and some numerical applications are shown.

MSC:

74A55 Theories of friction (tribology)
74M15 Contact in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
74P10 Optimization of other properties in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
65K10 Numerical optimization and variational techniques
Full Text: DOI

References:

[1] Linear and Nonlinear Programming, Addison-Wesley, Reading, MA, 1984.
[2] Greenwood, Proc. Roy. Soc. London 295-A pp 300– (1966) · doi:10.1098/rspa.1966.0242
[3] ’Problemi Termomeccanici di Contatto-Aspetti Fisici e Computazionali’, Ph. D. Thesis, Ist. di Scienza e Tecnica delle Costruzioni, Univ. of Padua, Italy, 1991.
[4] Zavarise, Int J. Numer. Meth. Engng. 35 pp 767– (1992) · Zbl 0775.73305 · doi:10.1002/nme.1620350409
[5] and , ’Numerical analysis of microscopically elastic contact problems’, Proc. 2nd CMIS, Contact Mechanics Int. Symp., and (eds. ), Carry-Le-Rouet, France, Plenum, Publ., Oxford, 1995.
[6] Eterovic, Comput. Struct. 40 pp 203– (1991) · doi:10.1016/0045-7949(91)90347-O
[7] Finite Element Procedures, Prentice-Hall, Englewood Cliffs, N. J., 1995.
[8] Bathe, Comput. Struct.
[9] Johnson, Int. J. Numer. Meth. Engng. 28 pp 127– (1989) · Zbl 0675.73073 · doi:10.1002/nme.1620280110
[10] and , ’Elasto-plastic contact problems solved by the cross-constraints method’, in IV Int. Conf. on Computational Plasticity, Barcelona, and (eds. ), Pineridge Press, Swansea, 1995, pp. 2261-2270.
[11] Constrained Optimization and Lagrange Multiplier Methods, Computer Science and Applied Mathematics, Academic Press, New York, 1982. · Zbl 0572.90067
[12] Wriggers, Commun. Appl. Numer. Meth. Engng. 9 pp 815– (1993) · Zbl 0788.73077 · doi:10.1002/cnm.1640091005
[13] Wriggers, Comput. Meth. Appl. Mech. Engng. 113 pp 301– (1994) · Zbl 0847.73069 · doi:10.1016/0045-7825(94)90051-5
[14] Laursen, Int. J. Numer. Meth. Engng. 36 pp 3451– (1993) · Zbl 0833.73057 · doi:10.1002/nme.1620362005
[15] and , The Finite Element Method, 4th edn., McGraw-Hill, London, 1989.
[16] Francavilla, Int. J. Numer. Meth. Engng. 9 pp 913– (1975) · doi:10.1002/nme.1620090410
[17] Simo, Comput. Meth. Appl. Mech. Engng. 51 pp 163– (1985) · Zbl 0552.73097 · doi:10.1016/0045-7825(85)90088-X
[18] Hallquist, Comput. Meth. Appl. Mech. Engng. 50 pp 107– (1985) · Zbl 0567.73120 · doi:10.1016/0045-7825(85)90030-1
[19] Wriggers, Commun. Appl. Numer. Meth. 1 pp 199– (1985) · Zbl 0582.73110 · doi:10.1002/cnm.1630010503
[20] Papadopoulos, Comput. Meth. Appl. Mech. Engng. 94 pp 373– (1992) · Zbl 0743.73029 · doi:10.1016/0045-7825(92)90061-N
[21] Wriggers, Comput. Struct. 46 pp 47– (1993) · doi:10.1016/0045-7949(93)90166-B
[22] Oden, Comput. Struct. 19 pp 137– (1984) · doi:10.1016/0045-7949(84)90212-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.