×

Long-time behaviour for porous medium equations with convection. (English) Zbl 0906.35050

The long-time behaviour of solutions is investigated for the porous medium equation with convection: \[ u_t- (u^m)_{xx}+ (u^q)_x= 0, \qquad \text{in } \mathbb{R}\times (0,+\infty), \] and initial data \(u_0\in L^1(R)\) when \(M=| u_0| _{L^1} > 0\). The case \(m>1\) and \(q>1\) is only considered. This type of equation arises from modelling the transport of a solute through a porous medium under the assumption that the solute undergoes equilibrium absorption with the porous matrix.
The well-posedness of the Cauchy problem to this equation has been established by Ph. Bénilan and H. Touré [in C. R. Ann. Inst. H. Poincaré, Anal. Non Linéaire 12, 727-761 (1995; Zbl 0839.35068)]. In the article under review, the authors work with mild solutions in the sense of the nonlinear semigroup theory. Their analysis shows that there is a critical value \(q_1=m+1\) such that: (i) if \(q>q_1\), the solution \(u\) behaves as \(t\to +\infty\) as the Barenblatt-Pattle similarity solution \(E_M\) to the porous medium equation; (ii) if \(q=q_1\), the solution \(u\) behaves as \(t\to +\infty\) as the source-type solution \(\Theta_M\) to the porous medium equation with convection; (iii) if \(q\in (1,q_1)\), the long-time dynamics is dominated by the convective part of the equation; the solution \(u\) behaves as \(t\to +\infty\) as the unique non-negative entropy solution \(F_M\) to \(F_{Mt}+ (F_M^q)_x= 0\).

MSC:

35K65 Degenerate parabolic equations
35B40 Asymptotic behavior of solutions to PDEs
76S05 Flows in porous media; filtration; seepage

Citations:

Zbl 0839.35068
Full Text: DOI

References:

[1] DOI: 10.1137/0728048 · Zbl 0732.65084 · doi:10.1137/0728048
[2] Friedman, Trans. Amer. Math. Soc. 262 pp 551– (1980)
[3] DOI: 10.1007/BF01762360 · Zbl 0629.46031 · doi:10.1007/BF01762360
[4] DOI: 10.1016/0022-1236(91)90105-E · Zbl 0762.35011 · doi:10.1016/0022-1236(91)90105-E
[5] DOI: 10.1512/iumj.1993.42.42065 · Zbl 0791.35059 · doi:10.1512/iumj.1993.42.42065
[6] DOI: 10.1007/BF00392203 · Zbl 0807.35059 · doi:10.1007/BF00392203
[7] Dunford, Linear Operators. Part I: General Theory (1958)
[8] DOI: 10.1016/0022-0396(87)90125-2 · Zbl 0634.35042 · doi:10.1016/0022-0396(87)90125-2
[9] Carpio, C. R. Acad. Sci. Paris Sér. I Math. 319 pp 51– (1994)
[10] Bénilan, Ann. Inst.H. Poincaré, Anal. Non Linéaire 12 pp 727– (1995) · Zbl 0839.35068 · doi:10.1016/S0294-1449(16)30149-4
[11] Bénilan, C. R. Acad. Sci. Paris Sér. I Math. 299 pp 919– (1984)
[12] DOI: 10.1016/0362-546X(94)00321-8 · Zbl 0840.35052 · doi:10.1016/0362-546X(94)00321-8
[13] DOI: 10.1016/0022-0396(84)90096-2 · Zbl 0545.35057 · doi:10.1016/0022-0396(84)90096-2
[14] Laurencot, Comm. Appl. Anal. 1 pp 489– (1997)
[15] Kruzhkov, Math. Notes 6 pp 517– (1969) · Zbl 0189.10602 · doi:10.1007/BF01450257
[16] DOI: 10.1016/0022-247X(78)90036-7 · Zbl 0387.76083 · doi:10.1016/0022-247X(78)90036-7
[17] DOI: 10.1093/qjmam/47.1.69 · Zbl 0821.76076 · doi:10.1093/qjmam/47.1.69
[18] DOI: 10.1007/BF00249701 · Zbl 0336.76037 · doi:10.1007/BF00249701
[19] Gilding, Ann. Scuola Norm. Sup. Pisa 16 pp 165– (1989)
[20] Gilding, Ann. Scuola Norm. Sup. Pisa 4 pp 393– (1977)
[21] DOI: 10.1080/03605308808820578 · Zbl 0665.35038 · doi:10.1080/03605308808820578
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.