×

Asymptotic behavior of solutions of three-term Poincaré difference equations. (English) Zbl 0888.39006

The author considers the difference equation \(Z_n= b_nZ_{n-1} +a_n Z_{n-2}\) with complex coefficients \(a_n\to a\), \(b_n\to b\) for \(n\to\infty\) and \(a_n\neq 0\). The solutions \(x_1\), \(x_2\) of \(x^2= ax+b\) shall satisfy \(|x_1|<|x_2|\). Under the assumption that \(\sum(a_n-a)\) and \(\sum(b_n-b)\) are only conditionally convergent, conditions are given such that \(\lim_{n\to\infty} Z_nx_2^{-n}=Z\) exists, and the error \(|Z-Z_nx_2^{-n} |\) is estimated. The results are applied to ten examples, in particular to recurrence equations arising from hypergeometric functions and continued fractions, respectively.

MSC:

39A11 Stability of difference equations (MSC2000)
11B37 Recurrences
40A15 Convergence and divergence of continued fractions

References:

[1] M. Abramowitz and I.A. Stegun, Handbook of mathematical functions 55 , National Bureau of Standards, Applied Mathematical Series, 1964. · Zbl 0171.38503
[2] R.J. Arms and A. Edrei, The Padé tables and continued fractions generated by totally positive sequences , in Mathematical essays , Ohio University Press, Athens, Ohio, 1970. · Zbl 0224.30020
[3] B.C. Berndt, Ramanujan’s notebooks, part II, Springer-Verlag, New York, 1989. · Zbl 0716.11001
[4] G.D. Birkhoff, General theory of linear difference equations , Trans. Amer. Math. Soc. 12 (1911), 243-284. JSTOR: · JFM 42.0359.02 · doi:10.2307/1988577
[5] ——–, Formal theory of irregular linear difference equations , Acta Math. 54 (1930), 205-246. · JFM 56.0402.01 · doi:10.1007/BF02547522
[6] G.D. Birkhoff and W.J. Trjitzinsky, Analytic theory of singular difference equations , Acta Math. 60 (1932), 1-89. · Zbl 0006.16802 · doi:10.1007/BF02398269
[7] A. Erdélyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher transcendental functions , 1, McGraw-Hill Book Company, New York, 1953. · Zbl 0052.29502
[8] J.L. Fields, Y.L. Luke and J. Wimp, Recursion formulae for generalized hypergeometric functions , J. Approx. Theory 1 (1968), 137-166. · Zbl 0177.32302 · doi:10.1016/0021-9045(68)90018-X
[9] D.P. Gupta, M.E.H. Ismail and D. Masson, Associated continuous Hahn Polynomials , Canadian J. Math. 43 (1991), 1263-1280. · Zbl 0752.33002 · doi:10.4153/CJM-1991-072-3
[10] D.P. Gupta and D.R. Masson, Exceptional \(q\)-Askey-Wilson polynomials and continued fractions , Proc. Amer. Math. Soc. 112 (1991), 717-727. · Zbl 0738.33010 · doi:10.2307/2048694
[11] ——–, Watson’s basic analogue of Ramanujan’s entry \(40\) and its generalization , SIAM J. Math. Anal. 25 (1994), 429-440. · Zbl 0804.33015 · doi:10.1137/S0036141093225121
[12] ——–, Solutions to the associated \(q\)-Askey-Wilson polynomial recurrence relation , in Approximation and computation , Birkhauser Press, Cambridge, 1994. · Zbl 0823.33011
[13] D.P. Gupta, M.E.H. Ismail and D.R. Masson, Contiguous relations, basic hypergeometric functions and orthogonal polynomials II: Associated big \(q\)-Jacobi polynomials , J. Math. Anal. Appl. 171 (1992), 477-497. · Zbl 0766.33016 · doi:10.1016/0022-247X(92)90360-P
[14] M.E.H. Ismail, J. Letessier, G. Valent and J. Wimp, Two families of associated Wilson polynomials , Canadian J. Math. 42 (1990), 659-695. · Zbl 0712.33005 · doi:10.4153/CJM-1990-035-4
[15] M.E.H. Ismail and D.R. Masson, Two families of orthogonal polynomials related to Jacobi polynomials , Rocky Mountain J. Math. 21 (1991), 359-375. · Zbl 0744.33004 · doi:10.1216/rmjm/1181073013
[16] ——–, \(q\)-Hermite polynomials, biorthogonal functions, and \(q\)-beta integrals , Trans. Amer. Math. Soc., · Zbl 0812.33012 · doi:10.2307/2154943
[17] ——–, Generalized orthogonality and continued fractions , · Zbl 0846.33005 · doi:10.1006/jath.1995.1106
[18] M.E.H. Ismail and M. Rahman, Associated Askey-Wilson polynomials , Trans. Amer. Math. Soc. 328 (1991), 201-239. · Zbl 0738.33011 · doi:10.2307/2001881
[19] M.E.H. Ismail, E.B. Saff and D.R. Masson, A minimal solution approach to polynomial asymptotics , in Orthogonal polynomials and their applications (C. Brezinski, L. Gori and A. Ronveaux, eds.), Baltzen, Basel, 1991. · Zbl 0836.30004
[20] W.B. Jones and W.J. Thron, Continued fractions. Analytic theory and applications , Addison-Wesley Publishing Company, Reading, 1980. · Zbl 0445.30003
[21] K. Knopp, Theory and application of infinite series , Hafner Publishing Company, 1951. · Zbl 0042.29203
[22] L. Lorentzen and H. Waadeland, Continued fractions with applications , North-Holland, Amsterdam, 1991. · Zbl 0782.40001
[23] Y.L. Luke, The special functions and their applications , Vol. 1, Academic Press, Boston, 1969. · Zbl 0193.01701
[24] D.R. Masson, Convergence and analytic continuation for a class of regular \(C\)-fractions , Canadian Math. Bull. 28 (1985), 411-421. · Zbl 0553.30004 · doi:10.4153/CMB-1985-050-5
[25] ——–, Difference equations, continued fractions, Jacobi matrices and orthogonal polynomials , in Nonlinear numerical methods and rational approximation (A. Cuyt, ed.), Reidel, Dordrecht, 1988. · Zbl 0697.39002
[26] ——–, Difference equations revisited , CMS Conf. Proc. 9 (1988), 73-82. · Zbl 0639.39002
[27] ——–, Some continued fractions of Ramanujan and Meixner-Pollaczek polynomials , Canad. Math. Bull. 32 (1989), 177-181. · Zbl 0636.33007
[28] ——–, A generalization of Ramanujan’s best theorem on continued fractions , C.R. Math. Rep. Acad. Sci. Canada 13 (1991), 167-172. · Zbl 0766.33005
[29] ——–, Wilson polynomials and some continued fractions of Ramanujan , Rocky Mountain J. Math. 21 (1991), 489-499. · Zbl 0733.33012 · doi:10.1216/rmjm/1181073019
[30] ——–, Associated Wilson polynomials , Constr. Approx. 7 (1991), 521-534. · Zbl 0746.33003 · doi:10.1007/BF01888173
[31] J. Minkus, An analogue of the continued fractions of Gauss, Abstract , Commun. Anal. Theor. Continued Fractions 2 (1993), 32-33.
[32] O. Njå stad, A survey of some results on separate convergence of continued fractions , in Analytic theory of continued fractions III (L. Jacobsen, ed.), Springer-Verlag, New York, 1989. · Zbl 0683.40002
[33] H. Padé, Mémoire sur les développements en fractions continues de la fonction exponentielle pouvant servir d’introduction à la théorie des fractions continues algébriques , Ann. éc. 16 (1899). · JFM 30.0206.02
[34] O. Perron, Über einen Satz des Herrn Poincaré , J. Reine Angew. Math. 136 (1909), 17-37. · JFM 40.0385.01
[35] ——–, Die Lehre von den Kettenbrüchen , Band 2, Teubner, Stuttgart, 1958.
[36] S. Pincherle, Sur la génération de systèmes récurrents au moyen d’une equation linéaire differentielle , Acta Math. 16 (1893), 341-363. · JFM 24.0364.01
[37] H. Poincaré, Sur les equations linéaires aux differentielles ordinaires et aux differences finis , Amer. J. Math. 7 (1885), 203-258. JSTOR: · JFM 17.0290.01 · doi:10.2307/2369270
[38] H.-J. Runckel, Meromorphic extension of analytic continued fractions across their divergence line with applications to orthogonal polynomials , Trans. Amer. Math. Soc. (1992), 183-212. JSTOR: · Zbl 0772.30005 · doi:10.2307/2153978
[39] ——–, Solution formulas for linear difference equations with applications to continued fractions , Constr. Approx. 10 (1994), 207-234. · Zbl 0803.39003 · doi:10.1007/BF01263065
[40] W.J. Thron, Some recent results on separate convergence of continued fractions , in Computational methods and function theory (St. Ruscheweyh et al., ed.), Springer-Verlag, New York, 1990. · Zbl 0711.30006 · doi:10.1007/BFb0087908
[41] W.J. Thron and H. Waadeland, Modifications of continued fractions. A survey , in Analytic theory for continued fractions (W.B. Jones, W.J. Thron and H. Waadeland, eds.), Springer-Verlag, New York, 1982. · Zbl 0497.30002 · doi:10.1007/BFb0093304
[42] W.F. Trench, Asymptotic behavior of solutions of Poincaré difference equations , Proc. Amer. Math. Soc. 119 (1993), 431-438. JSTOR: · Zbl 0783.39002 · doi:10.2307/2159925
[43] G.N. Watson, Asymptotic expansions of hypergeometric functions , Trans. Cambridge Phil. Soc. 22 (1918), 277-308.
[44] J. Wimp., Recursion formulae for hypergeometric functions , Math. Comp. 22 (1968), 363-373. JSTOR: · Zbl 0186.10401 · doi:10.2307/2004666
[45] ——–, Computation with recurrence relations , Pitman, London, 1983. · Zbl 0543.65084
[46] ——–, Some explicit Padé approximants for the function \(\Phi^\p/\Phi\) and a related quadrature formula involving Bessel functions , SIAM J. Math. Anal. 16 (1985), 887-895. · Zbl 0587.41012 · doi:10.1137/0516067
[47] ——–, Explicit formulas for the associated Jacobi polynomials and some applications , Canad. J. Math. 39 (1987), 983-1000. · Zbl 0643.33009 · doi:10.4153/CJM-1987-050-4
[48] ——–, Pollaczek polynomials and Padé approximants : Some closed-form expressions , J. Comp. Appl. Math. 32 (1990), 301-310. · Zbl 0712.33006 · doi:10.1016/0377-0427(90)90440-B
[49] J. Wimp and D. Zeilberger, Resurrecting the asymptotics of linear recurrences , J. Math. Anal. Appl. 111 (1985), 162-176. · Zbl 0579.05007 · doi:10.1016/0022-247X(85)90209-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.