×

Existence of periodic solutions of the Navier-Stokes equations. (English) Zbl 0878.35087

The author considers the nonstationary Navier-Stokes system \[ \frac{\partial u}{\partial t}-\Delta u+u\cdot\nabla u+\nabla p=f ,\quad \nabla\cdot u=0\quad x\in\Omega,\;\;t\in \mathbb{R} \] with boundary condition \(u=0\) on \(\partial\Omega\) and periodicity condition \[ u(x,t+\omega)=u(x,t)\quad x\in\Omega,\;t\in \mathbb{R} \] Here \(\Omega\) is a bounded domain in \(\mathbb{R}^n\;(n=3,4)\) with smooth boundary \(\partial\Omega\). It is proved that if \(f\) is a sufficiently small \(\omega\)-periodic function then the problem has a unique \(\omega\)-periodic strong solution.

MSC:

35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
35B10 Periodic solutions to PDEs
Full Text: DOI

References:

[1] Adams, R. A., Sobolev Spaces (1975), Academic Press: Academic Press New York · Zbl 0186.19101
[2] Fujita, H.; Kato, T., On the Navier-Stokes initial value problem 1, Arch. Rational Mech. Anal., 16, 269-315 (1964) · Zbl 0126.42301
[3] Fujiwara, D.; Morimoto, H., An\(L_r\)-theorem of the Helmholtz decomposition of vector fields, J. Fac. Sci. Univ. Tokyo, 24, 685-700 (1977) · Zbl 0386.35038
[4] Giga, Y.; Miyakawa, T., Solutions in\(L_r\)of the Navier-Stokes initial value problem, Arch. Rational Mech. Anal., 89, 267-281 (1985) · Zbl 0587.35078
[5] Hopf, E., Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachr., 4, 213-231 (1951) · Zbl 0042.10604
[6] Ito, S., The existence and the uniqueness of regular solution of non-stationary Navier-Stokes equations, J. Fac. Sci. Univ. Tokyo, 9, 103-140 (1961) · Zbl 0116.17905
[7] Kaniel, S.; Shinbrot, M., A reproductive property of the Navier-Stokes equations, Arch. Rational Mech. Anal., 24, 302-369 (1967) · Zbl 0148.34006
[8] H. Kozono, M. Nakao, Periodic solutions of the Navier-Stokes equations in unbounded domains; H. Kozono, M. Nakao, Periodic solutions of the Navier-Stokes equations in unbounded domains · Zbl 0860.35095
[9] Ladyzhenskaia, O. A., The Mathematical Theory of Viscous Incompressible Flow (1969), Gordon & Breach: Gordon & Breach New York · Zbl 0184.52603
[10] Lions, J. L., Quelque Methodes de Résolution des Problèmes aux Limites Non Linéaires (1969), Dunod: Dunod Paris · Zbl 0189.40603
[11] Lions, J. L.; Prodi, G., Un théorème d’existence et d’unicité dans les équations de Navier-Stokes en dimension 2, C. R. Acad. Sci. Paris, 248, 3519-3521 (1959) · Zbl 0091.42105
[12] Masuda, K., Weak solutions of Navier-Stokes equations, Tôhoku Math. J., 36, 623-646 (1984) · Zbl 0568.35077
[13] Serrin, J., The initial value problem for the Navier-Stokes equations, (Langer, R. E., Nonlinear Problem (1963), Univ. of Wisconsin Press: Univ. of Wisconsin Press Madison), 69-98 · Zbl 0115.08502
[14] Takeshita, A., On the reproductive property of the 2-dimensional Navier-Stokes equations, J. Fac. Sci. Univ. Tokyo, 16, 297-311 (1970) · Zbl 0196.11803
[15] Temam, R., Navier-Stokes Equations (1977), North-Holland: North-Holland Amsterdam · Zbl 0335.35077
[16] von Wahl, W., The Equations of Navier-Stokes and Abstract Parabolic Equations (1985), Vieweg: Vieweg Braunschweig · Zbl 1409.35168
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.