×

Solutions in \(L_ r\) of the Navier-Stokes initial value problem. (English) Zbl 0587.35078

The authors prove the existence of a unique strong solution in \(L_ r\) space \((1<r<\infty)\) of the initial value problem of the Navier-Stokes equations \(u_ t+(u,\nabla)u-\Delta u=f-\nabla p,\) div u\(=0\) in \(D\times (0,T)\), \(u=0\) on \(S\times (0,T)\), \(u(0,x)=a(x)\) in D, where D is a bounded domain in \(R^ n\) (n\(\geq 2)\) with smooth boundary S. Let \(X_ r\) be the closure in \((L_ r(D))^ n\) of \(\{u\in (C_ 0^{\infty}:\) div u\(=0\}\). Then the appropriate Stokes operator \(-A_ r\) \((1<r<\infty)\) generates a bounded holomorphic semigroup of class \(C_ 0\) in \(X_ r\) [see the first author, Math. Z. 178, 297-329 (1981; Zbl 0473.35064)], and the domain of fractional power \(D(A_ r^{\alpha})\) \((0<\alpha <1)\) is the complex interpolation space \([X_ r,D(A_ r)]_{\alpha}\) [see the first author, Proc. Jap. Acad., Ser. A 57, 85-89 (1981; Zbl 0471.35069) and Arch. Ration. Mech. Anal. 89, 251-265 (1985)]. On the base of these facts, they obtain the following remarkable results:
(i) Fix \(\gamma\) and choose \(\delta\geq 0\) such that n/2r-\(\leq \gamma <1\) (n\(\geq 2)\), \(-\gamma <\delta <1-| \gamma |\). Assume \(a\in D(A_ r^{\gamma})\) and \(\| A_ r^{-\delta}P_ rf(t)\|\) is continuous on (0,T) and \(\| A_ r^{-\delta}P_ rf(t)\| =o(t^{\gamma +\delta -1})\) as \(t\to 0\), where \(P_ r\) is the projection of \(L_ r(D))^ n\) on \(X_ r\). Then there exists a local solution of the integral equation \[ (*)\quad u(t)=\exp (-tA_ r)a+\int^{t}_{0}\exp (-(t-s)A_ r)\{-P_ r(u,\nabla)u+P_ rf(s)\} ds \] such that (a) \(u\in C([0,T_*];D(A_ r^{\gamma}))\), \(u(0)=a\), (b) \(u\in C((0,T_*];D(A_ r^{\alpha}))\) for some \(T_*>0\), (c) \(\| A_ r^{\alpha}u(t)\| =o(t^{\gamma -\alpha})\) as \(t\to 0\) for all \(\alpha\), \(\gamma <\alpha <1-\delta.\)
(ii) Any solution of (*) satisfying (a) and (b’) \(u\in C((0,T_*];D(A_ r^{\beta}))\), (c’) \(\| A_ r^{\beta}u(t)\| =o(t^{\gamma - \beta})\) for some \(\beta\), \(| \gamma | <\beta\) is unique.
(iii) If \(P_ rf: (0,T]\to X_ r\) is Hölder continuous on each [\(\epsilon\),T] \((0<\epsilon <T)\), the solution u(t) of (*) given in (i) satisfies the differential equation in \(X_ r:\) \[ u_ t+A_ ru=-P_ r(u,\nabla)u+P_ rf\quad on\quad (0,T_*]\quad and\quad u(t)\in D(A_ r)\quad for\quad t\in (0,T_*]. \] (iv) Let \(a\in D(A_ r^{\gamma})\) and \(P_ rf\in C((0,\infty);X_ r).\) Then the solution u(t) given by (i) exists on (0,\(\infty)\) provided the data a and \(P_ rf\) are small in some sense.
The authors also consider the regularity of solutions and show that if the external force f is smooth, their solutions given by (i) are smooth up to the boundary.
Reviewer: R.Iino

MSC:

35Q30 Navier-Stokes equations
47D03 Groups and semigroups of linear operators
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
35B65 Smoothness and regularity of solutions to PDEs
Full Text: DOI

References:

[1] Adams, R. A., Sobolev spaces. New York: Academic Press 1975. · Zbl 0314.46030
[2] Calderón, A. P., Intermediate spaces and interpolation; the complex method. Studia Math. 24, 113-190 (1964). · Zbl 0204.13703
[3] Cattabriga, L., Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova 31, 308-340 (1961). · Zbl 0116.18002
[4] Fabes, E. B., Lewis, J. E., & N. M. Riviere, Boundary value problems for the Navier-Stokes equations. Amer. J. Math. 99, 626-668 (1977). · Zbl 0386.35037 · doi:10.2307/2373933
[5] Fujita, H., & T. Kato, On the Navier-Stokes initial value problem I. Arch. Rational Mech. Anal. 16, 269-315 (1964). · Zbl 0126.42301 · doi:10.1007/BF00276188
[6] Fujita, H., & H. Morimoto, On fractional powers of the Stokes operator. Proc. Japan Acad. 46, 1141-1143 (1970). · Zbl 0235.35067 · doi:10.3792/pja/1195526510
[7] Fujiwara, D., On the asymptotic behaviour of the Green operators for elliptic boundary problems and the pure imaginary powers of some second order operators. J. Math. Soc. Japan 21, 481-521 (1969). · Zbl 0186.43103 · doi:10.2969/jmsj/02140481
[8] Fujiwara, D., & H. Morimoto, An Lr-theorem of the Helmholtz decomposition of vector fields. J. Fac. Sci. Univ. Tokyo, Sec. I, 24, 685-700 (1977). · Zbl 0386.35038
[9] Giga, Y., Analyticity of the semigroup generated by the Stokes operator in L r spaces. Math. Z. 178, 297-329 (1981). · doi:10.1007/BF01214869
[10] Giga, Y., Domains of fractional powers of the Stokes operator in L r spaces. Arch. Rational Mech. Anal. 89, 251-265 (1985). · Zbl 0584.76037 · doi:10.1007/BF00276874
[11] Giga, Y., The Stokes operator in L r spaces. Proc. Japan Acad. 57, 85-89 (1981). · Zbl 0471.35069 · doi:10.3792/pjaa.57.85
[12] Heywood, J. G., The Navier-Stokes equations: On the existence, regularity and decay of solutions. Indiana Univ. Math. J. 29, 639-681 (1980). · Zbl 0494.35077 · doi:10.1512/iumj.1980.29.29048
[13] Hopf, E., Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213-231 (1950-51).
[14] Inoue, A., & M. Wakimoto, On existence of solutions of the Navier-Stokes equation in a time dependent domain. J. Fac. Sci. Univ. Tokyo, Sec. I, 24, 303-320 (1977). · Zbl 0381.35066
[15] Kaniel, S., & M. Shinbrot, Smoothness of weak solutions of the Navier-Stokes equations. Arch. Rational Mech. Anal. 24, 302-324 (1967). · Zbl 0152.44902
[16] Kato, T., & H. Fujita, On the nonstationary Navier-Stokes system. Rend. Sem. Mat. Univ. Padova 32, 243-260 (1962). · Zbl 0114.05002
[17] Ladyzhenskaya, O. A., The classical character of generalized solutions of nonlinear nonstationary Navier-Stokes equations. Proc. Steklov Inst. Math. 92, 113-131 (1966). · Zbl 0172.53404
[18] Ladyzhenskaya, O. A., The mathematical theory of viscous incompressible flow. New York: Gordon and Breach 1969. · Zbl 0184.52603
[19] Lions, J. L., & E. Magenes, Problemi ai limiti non omogenei (III). Ann. Scuola Norm. Sup. Pisa 15, 41-103 (1961). · Zbl 0115.31401
[20] Lions, J. L., & E. Magenes, Problemi ai limiti non omogenei (V), ibid Ann. Scuola Norm. Sup. Pisa, 16, 1-44 (1962).
[21] Miyakawa, T., On the initial value problem for the Navier-Stokes equations in L p spaces. Hiroshima Math. J. 11, 9-20 (1981). · Zbl 0457.35073
[22] Serrin, J., On the interior regularity of weak solutions of the Navier-Stokes equations Arch. Rational Mech. Anal. 9, 187-195 (1962). · Zbl 0106.18302 · doi:10.1007/BF00253344
[23] Serrin, J., The initial value problem for the Navier-Stokes equations. Nonlinear problems, R. E. Langer ed., University of Wisconsin Press, Madison, 1963, 69-98. · Zbl 0115.08502
[24] Sobolevskii, P. E., On non-stationary equations of hydrodynamics for viscous fluid. Dokl. Akad. Nauk SSSR 128, 45-48 (1959), (in Russian).
[25] Sobolevskii, P. E., Study of Navier-Stokes equations by the methods of the theory of parabolic equations in Banach spaces. Soviet Math. Dokl. 5, 720-723 (1964).
[26] Solonnikov, V. A., Estimates of the solutions of a nonstationary linearized system of Navier-Stokes equations. Amer. Math. Soc. Transl. (2) 75, 1-116 (1968). · Zbl 0187.03402
[27] Solonnikov, V. A., Estimates for solutions of nonstationary Navier-Stokes equations. J. Soviet Math. 8, 467-529 (1977). · Zbl 0404.35081 · doi:10.1007/BF01084616
[28] Wahl, W. von, Regularity questions for the Navier-Stokes equations, Approximation methods for Navier-Stokes problems, R. Rautmann ed., Lecture Notes in Math. 771, 538-542. Berlin Heidelberg New York: Springer 1980. · Zbl 0451.35051
[29] Wahl, W. von, A book to be published.
[30] Weissler, F. B., The Navier-Stokes initial value problem in L p. Arch. Rational Mech. Anal. 74, 219-230 (1980). · Zbl 0454.35072 · doi:10.1007/BF00280539
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.