×

On the construction of trigonometric solutions of the Yang-Baxter equation. (English) Zbl 0874.17018

Summary: We describe the construction of trigonometric R-matrices corresponding to the (multiplicity-free) tensor product of two irreducible representations of a quantum algebra \(U_q(G)\). Our method is a generalization of the tensor product graph method to the case of two different representations. It yields the decomposition of the R-matrix into projection operators. Many new examples of trigonometric R-matrices (solutions to the spectral parameter dependent Yang-Baxter equation) are constructed using this approach.

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
81R50 Quantum groups and related algebraic methods applied to problems in quantum theory

References:

[1] Sklyanin, E. K.; Takhtadzhyan, L. A.; Faddeev, L. D.: Quantum inverse problem method I. Theor. math. Phys. 40, 194 (1979) · Zbl 0449.35096
[2] Faddeev, L. D.: Two-dimensional integrable models in quantum field theory. Physica scripta 24, 832 (1981) · Zbl 1063.81643
[3] Korepin, V. E.; Bogoliubov, N. M.; Izergin, A. G.: Quantum inverse scattering method and correlation functions. (1993) · Zbl 0787.47006
[4] Baxter, R. J.: Exactly solved models in statistical mechanics. (1982) · Zbl 0538.60093
[5] Zamolodchikov, A. B.; Zamolodchikov, Al.B.: Factorized S-matrices in two dimensions as the exact solution of certain relativistic quantum field theory models. Ann. of phys. 120, 253 (1979) · Zbl 0946.81070
[6] Jimbo, M.: Introduction to the Yang-Baxter equation. Int. J. Mod. phys. A 4, 3759 (1989) · Zbl 0697.35131
[7] Drinfel’d, V. G.: Hopf algebras and the quantum Yang-Baxter equation. Sov. math. Dokl. 32, 254 (1985) · Zbl 0588.17015
[8] Jimbo, M.: A q-difference analogue of \(U(g)\) and the Yang-Baxter equation. Lett. math. Phys. 10, 63 (1985) · Zbl 0587.17004
[9] Drinfel’d, V. G.: Quantum groups. Proc. int. Congr. math., 798 (1986) · Zbl 0617.16004
[10] Jimbo, M.: A q-analogue of \(U(gl(N+1))\), Hecke algebra, and the Yang-Baxter equation. Lett. math. Phys. 11, 247 (1986) · Zbl 0602.17005
[11] Frenkel, I. B.; Reshetikhin, N. Yu.: Quantum affine algebras and holonomic difference equations. Commun. math. Phys. 146, 1 (1992) · Zbl 0760.17006
[12] Kac, V. G.: Infinite dimensional Lie algebras. (1990) · Zbl 0716.17022
[13] Delius, G. W.; Zhang, Y. -Z.: Finite dimensional representation oof quantum affine algebras. Bi-tp-94/11, uqmath-94-01 (1994)
[14] Zhang, R. B.; Gould, M. D.; Bracken, A. J.: From representations of the braid group to solutions of the Yang-Baxter equation. Nucl. phys. B 354, 625 (1991) · Zbl 0727.17007
[15] Cherednik, I. V.: On a method of constructing factorized S-matrices in elementary functions. Theor. math. Phys. 43, 117 (1980)
[16] Izergin, A. G.; Korepin, V. E.: The inverse scattering method approach to the quantum Shabat-Mikhailov model. Commun. math. Phys. 79, 303 (1981) · Zbl 0441.35053
[17] Zamolodchikov, A. B.; Fateev, V. A.: A model factorized S-matrix and an integrable spin-1 Heisenberg chain. Sov. J. Nucl. 32, 298 (1980)
[18] Bazhanov, V. V.: Trigonometric solutions of triangle equations and classical Lie algebras. Phys. lett. B 159, 321 (1985)
[19] Jimbo, M.: Quantum R-matrix for the generalized Toda system. Commun. math. Phys. 102, 537 (1986) · Zbl 0604.58013
[20] Ma, Z. -Q.: The spectral-dependent solutions to the Yang-Baxter equations for quantum E6 and E7. Beijing preprint BIHEP-TH-90-14 (1990)
[21] Okado, M.: Quantum R matrices related to the spin representations of bn and dn. Comm. math. Phys. 134, 460 (1990) · Zbl 0722.17008
[22] Kulish, P. P.; Reshetikhin, N. Yu.; Sklyanin, E. K.: Yang-Baxter equation and representation theory: I. Lett. math. Phys. 5, 393 (1981) · Zbl 0502.35074
[23] Chari, V.; Pressley, A.: Quantum affine algebras. Commun. math. Phys. 142, 261 (1991) · Zbl 0739.17004
[24] Mackay, N. J.: The fusion of R-matrices using the birman-wenzl-murakami algebra. J. phys. A: math. Gen. 33, 1529 (1992)
[25] Tolstoy, V. N.; Khoroshkin, S. M.: The universal R-matrix for quantum untwisted affine Lie algebras. Funktsional’nyi analiz i ego prilozheniya 26, 85 (1992) · Zbl 0758.17011
[26] Khoroshkin, S. M.; Tolstoy, V. N.: Uniqueness theorem for universal R-matrix. Lett. math. Phys. 24, 231 (1992) · Zbl 0834.17013
[27] Zhang, Y. -Z.; Gould, M. D.: On universal R-matrix for quantized nontwisted rank 3 affine Lie algebras. Lett. math. Phys. 29, 19 (1993) · Zbl 0795.17010
[28] Zhang, Y. -Z.; Gould, M. D.: Quantum affine algebras and universal R-matrix with spectral parameter. Lett. math. Phys. 31, 101 (1994) · Zbl 0795.17011
[29] A.J. Bracken, G.W. Delius, M.D. Gould, Y.-Z. Zhang, Infinite families of gauge-equivalent R-matrices and gradations of quantized affine algebras, BI-TP-94/12, hep-th/9310183, Int. J. Mod. Phys. B (to appear). · Zbl 1264.17010
[30] Berg, B.; Karowski, M.; Weisz, P.; Kurak, V.: Factorized \(U(n)\) symmetric S-matrices in two dimensions. Nucl. phys. B 134, 125 (1978)
[31] Ogievetsky, E.; Wiegmann, P.: Factorized S-matrix and the Bethe ansatz for simple Lie groups. Phys. lett. B 168, 360 (1986)
[32] Ogievetsky, E.; Reshetikhin, N.; Wiegmann, P.: The principal chiral field in two dimensions on classical Lie algebras. Nucl. phys. B 280, 45 (1987)
[33] Reshetikhin, N. Yu.; Wiegmann, P. B.: Towards the classification of completely integrable quantum field theories (the Bethe-ansatz associated with Dynkin diagrams and their automorphisms). Phys. lett. B 189, 125 (1987)
[34] Chari, V.; Pressley, A.: Yangians and R-matrices. L’enseignement mathématique 36, 267 (1990) · Zbl 0726.17013
[35] Chari, V.; Pressley, A.: Fundamental representations of yangians and singularities of R-matrices. J. reine angew. Math. 417, 87 (1991) · Zbl 0726.17014
[36] Mackay, N. J.: New factorized S-matrices associated with \(SO(N)\). Nucl. phys. B 356, 729 (1991)
[37] Mackay, N. J.: Rational R-matrices in irreducible representations. J. phys. A: math. Gen 24, 4017 (1991) · Zbl 0753.17037
[38] Mackay, N. J.: The full set of cn invariant factorized S-matrices. J. phys. A: math. Gen. 25, L1343 (1992) · Zbl 0788.17011
[39] Rosso, M.: Finite dimensional representations of the quantum analog of the enveloping algebra of a complex simple Lie algebra. Commun. math. Phys. 117, 581 (1988) · Zbl 0651.17008
[40] Lusztig, G.: Quantum deformations of certain simple modules over enveloping algebras. Adv. math. 70, 237 (1988) · Zbl 0651.17007
[41] Drinfel’d, V. G.: On almost cocommutative Hopf algebras. Leningrad math. J. 1, 321 (1990) · Zbl 0718.16035
[42] Reshetikhin, N. Yu.: Quantized universal enveloping algebras, the Yang-Baxter equation and invariants of links. Lomi e-4-87, e-17-87 (1988)
[43] Gould, M. D.: Quantum groups and diagonalization of the braid generator. Lett. math. Phys. 24, 183 (1992) · Zbl 0760.17009
[44] Gould, M. D.; Zhang, Y. -Z.: Quantized affine Lie algebras and diagonalization of braid generators. Lett. math. Phys. 30, 267 (1994) · Zbl 0792.17014
[45] Kirillov, A. N.; Reshetikhin, N.: Q-Weyl group and multiplicative formula for universal R-matrices. Commun. math. Phys. 134, 421 (1991) · Zbl 0723.17014
[46] G.W. Delius, M.D. Gould, Y.-Z. Zhang, Representation of the universal R-matrices and elementary intertwiners, in preparation.
[47] Hollowood, T. J.: Quantizing \(sl(N)\) solitons and the Hecke algebra. Int. J. Mod. phys. A 8, 947 (1993) · Zbl 0802.35131
[48] Bernard, D.; Leclair, A.: Quantum group symmetries and non-local currents in 2D QFT. Commun. math. Phys. 142, 99 (1991) · Zbl 0746.35037
[49] Hollowood, T. J.: The analytic structure of trigonometric S-matrices. Nucl. phys. B 414, 379 (1994) · Zbl 1007.81548
[50] Links, J.; Gould, M. D.: Two variable link polynomials from quantum supergroups. Lett. math. Phys. 26, 187 (1992) · Zbl 0777.57005
[51] A.J. Bracken, G.W. Delius, M.D. Gould, Y.-Z. Zhang, Solutions to the quantu, Yang-Baxter equation with extra non-additive parameters, hep-th/9405138, J. Phys. A: Math. Gen. (in press).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.