×

Quantum R matrix for the generalized Toda system. (English) Zbl 0604.58013

The paper deals with the solutions r(x) of the classical Yang-Baxter equation \[ (1)\quad [r^{12}(x),r^{13}(xy)]+[r^{12}(x),r^{23}(y)]+[r^{13}(xy),r^{23 }(y)]=0, \] for the generalized Toda system of type \(\hat{\mathfrak g}=A_ n^{(1)};B_ n^{(1)};C_ n^{(1)};D_ n^{(1)};A_{2n}^{(2)};A^{(2)}_{2n-1}\) and \(D^{(2)}_{n+1}\), where r(x) is a \({\mathfrak g}\otimes {\mathfrak g}\)-valued rational function, \({\mathfrak g}\) being a finite dimensional simple Lie algebra, and \(r^{12}(x)=r(x)\otimes I\), etc.
The problem is to find an \(R(x)=R(x,h)\) containing an arbitrary parameter h, such that: (i) It satisfies the quantum Yang-Baxter equation \[ (2)\quad R^{12}(x)\quad R^{13}(xy)\quad R^{23}(x)=R^{23}(x)\quad R^{13}(xy)\quad R^{12}(x), \] and (ii) As \(h\to 0\), (3) \(R(x,h)=\kappa (x,h)(I+hr(x)+...)\) holds with scalar \(\kappa(x,h)\).
The main result of the paper is the explicit construction of matrices R(x)\(\in End(V\otimes V)\) satisfying (2), where V is a finite dimensional representation of \({\mathfrak g}\) and \(R(x)\) takes values in \(U({\mathfrak g})\otimes U({\mathfrak g})\), where U(\({\mathfrak g})\) denotes the universal enveloping algebra of \({\mathfrak g}.\)
The paper is very clearly written.
Reviewer: D.E.Panayotounakos

MSC:

58D30 Applications of manifolds of mappings to the sciences
17B99 Lie algebras and Lie superalgebras
Full Text: DOI

References:

[1] Kulish, P. P., Sklyanin, E. K.: Solutions of the Yang-Baxter equation, J. Sov. Math.19, 1596 (1982) · Zbl 0553.58039 · doi:10.1007/BF01091463
[2] Semenov-Tyan-Shanskii, M. A.: What is a classicalR-matrix? Funct. Anal. Appl.17, 259 (1983) · Zbl 0535.58031 · doi:10.1007/BF01076717
[3] Drinfel’d, V. G.: Hamiltonian structures on Lie groups, Lie bi-algebras and the geometric meaning of the classical Yang-Baxter equations. Sov. Math. Dokl.27, 68 (1983)
[4] Reshetikhin, N. Yu., Faddeev, L. D.: Hamiltonian structures for integrable models of field theory Theor. Math. Phys.56, 847 (1984)
[5] Belavin, A. A., Drinfel’d, V. G.: Solutions of the classical Yang-Baxter equation for simple Lie algebras. Funct. Anal. Appl.16, 159 (1982) · Zbl 0511.22011 · doi:10.1007/BF01081585
[6] Kulish, P. P., Reshetikhin, N. Yu., Sklyanin, E. K.: Yang-Baxter equation and representation theory I. Lett. Math. Phys.5, 393 (1981) · Zbl 0502.35074 · doi:10.1007/BF02285311
[7] Kulish, P. P., Reshetikhin, N. Yu.: Quantum linear problem for the sine-Gordon equation and higher representations. J. Sov. Math.23, 2435 (1983) · doi:10.1007/BF01084171
[8] Babelon, O., de Vega, H. J., Viallet, C. M.: Solutions of the factorization equations from Toda field theory. Nucl. Phys.B190, 542 (1981) · Zbl 0495.58003 · doi:10.1016/0550-3213(81)90447-8
[9] Cherednik, I. V.: On a method of constructing factorizedS matrices in elementary functions. Theor. Math. Phys.43, 356 (1980) · doi:10.1007/BF01018470
[10] Chudnovsky, D. V., Chudnovsky, G. V.: Characterization of completelyX-symmetric factorizedS-matrices for a special type of interaction. Phys. Lett.79A, 36 (1980) · Zbl 0502.10017
[11] Schultz, C. L.: Solvableq-state models in lattice statistics and quantum field theory. Phys. Rev. Lett.46, 629 (1981) · doi:10.1103/PhysRevLett.46.629
[12] Perk, J. H. H., Schultz, C. L.: New families of commuting transfer matrices inq-state vertex models. Phys. Lett.84A, 407 (1981)
[13] Izergin, A. G., Korepin, V. E.: The inverse scattering method approach to the quantum Shabat-Mikhailov model. Commun. Math. Phys.79, 303 (1981) · Zbl 0441.35053 · doi:10.1007/BF01208496
[14] Bogoyavlensky, O. I.: On perturbations of the periodic Toda lattice. Commun. Math. Phys.51, 201 (1976) · doi:10.1007/BF01617919
[15] Olive, D. I., Turok, N.: Algebraic structure of Toda systems. Nucl. Phys.B220 [FS8], 491 (1983) · doi:10.1016/0550-3213(83)90504-7
[16] Kac, V. G.: Infinite dimensional Lie algebras. Boston, MA: Birkhäuser 1983 · Zbl 0537.17001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.