×

A class of iterative methods for solving nonlinear projection equations. (English) Zbl 0871.90091

Summary: A class of globally convergent iterative methods for solving nonlinear projection equations is provided under a continuity condition of the mapping \(F\). When \(F\) is pseudomonotone, a necessary and sufficient condition on the nonemptiness of the solution set is obtained.

MSC:

90C30 Nonlinear programming
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
49J40 Variational inequalities
Full Text: DOI

References:

[1] Eaves, B. C.,On the Basic Theorem of Complementarity, Mathematical Programming, Vol. 1, pp. 68–75, 1971. · Zbl 0227.90044 · doi:10.1007/BF01584073
[2] Harker, P. T., andPang, J. S.,Finite-Dimensional Variational Inequality and Nonlinear Complementarity Problems: A Survey of Theory, Algorithms, and Applications, Mathematical Programming, Vol. 48, pp. 161–220, 1990. · Zbl 0734.90098 · doi:10.1007/BF01582255
[3] Pang, J. S., andChan, D.,Iterative Methods for Variational and Complementarity Problems, Mathematical Programming, Vol. 24, pp. 284–313, 1982. · Zbl 0499.90074 · doi:10.1007/BF01585112
[4] Pang, J. S., andQi, L.,Nonsmooth Equations: Motivation and Algorithms, SIAM Journal on Optimization, Vol. 3, pp. 443–465, 1993. · Zbl 0784.90082 · doi:10.1137/0803021
[5] Korplevich, G. M.,Ekstragradientnyi Metod dlia Otyskaniia Sedlovykh Tchek i Drugikh Zadach, Ekonomica i Matematicheski Metody, Vol. 12, pp. 947–956 1976.
[6] Khobotov, E. N.,Modification of the Extragradient Method for the Solution of Variational Inequalities and Some Optimization Problems, Zhurnal Vychislitelnoi Matematiki i Matematicheskoi Fiziki, Vol. 27, pp. 1162–1473, 1987. · Zbl 0665.90078
[7] Marcotte, P.,Application of Khobotov’s Algorithm to Variational Inequalities and Network Equilibrium Problems, Information Systems and Operations Research, Vol. 29, pp. 258–270, 1991. · Zbl 0781.90086
[8] Sun, D.,An Iterative Method for Solving Variational Inequality Problems and Complementarity Problems, Numerical Mathematics: Journal of Chinese Universities, Vol. 16, pp. 145–153, 1994. · Zbl 0817.65048
[9] Fukushima, M.,Equivalent Differentiable Optimization Problems and Descent Methods for Asymmetric Variational Inequality Problems, Mathematical Programming, Vol. 53, pp. 99–110, 1992. · Zbl 0756.90081 · doi:10.1007/BF01585696
[10] He, B.,A Projection and Contraction Method for a Class of Linear Complementarity Problems and Its Application in Convex Quadratic Programming, Applied Mathematics and Optimization, Vol. 25, pp. 247–262, 1992. · Zbl 0767.90086 · doi:10.1007/BF01182323
[11] He, B.,On a Class of Iterative Projection and Contraction Methods for Linear Programming, Journal of Optimization Theory and Applications, Vol. 78, pp. 247–266, 1993. · Zbl 0792.90042 · doi:10.1007/BF00939669
[12] He, B.,Solving a Class of Linear Projection Equations, Numerische Mathematik, Vol. 69, pp. 71–80, 1994. · Zbl 0822.65040 · doi:10.1007/s002110050048
[13] He, B.,A New Method for a Class of Linear Variational Inequalities, Mathematical Programming, Vol. 66, pp. 137–144, 1994. · Zbl 0813.49009 · doi:10.1007/BF01581141
[14] He, B., andStoer, J.,Solutions of Projection Problems over Polytopes, Numerische Mathematik, Vol. 61, pp. 73–90, 1992. · Zbl 0758.65046 · doi:10.1007/BF01385498
[15] Solodov, M. V., andTseng, P.,Modified Projection-Type Methods for Monotone Variational Inequalities, SIAM Journal on Control and Optimization, Vol. 34, 1996 (to appear). · Zbl 0866.49018
[16] Sun, D.,A Projection and Contraction Method for the Nonlinear Complementarity Problem and Its Extensions, Mathematica Numerica Sinica, Vol. 16, pp. 183–194, 1994. · Zbl 0900.65188
[17] Sun, D.,A New Stepsize Skill for Solving a Class of Nonlinear Projection Equations, Journal of Computational Mathematics, Vol. 13, pp. 357–368, 1995. · Zbl 0854.65048
[18] Luo, Z. Q., andTseng, P.,On the Linear Convergence of Descent Methods for Convex Essentially Smooth Minimization, SIAM Journal on Control and Optimization, Vol. 30, pp. 408–425, 1992. · Zbl 0756.90084 · doi:10.1137/0330025
[19] Moré, J. J.,Coercivity Conditions in Nonlinear Complementarity Problems, SIAM Review, Vol. 16, pp. 1–16, 1974. · doi:10.1137/1016001
[20] Zarantonello, E. H.,Projections on Convex Sets in Hilbert Space and Spectral Theory, Contributions to Nonlinear Functional Analysis, Edited by E. H. Zarantonello, Academic Press, New York, pp. 237–424, 1971.
[21] Gafni, E. H., andBertsekas, D. P.,Two-Metric Projection Methods for Constrained Optimization, SIAM Journal on Control and Optimization, Vol. 22, pp. 936–964, 1984. · Zbl 0555.90086 · doi:10.1137/0322061
[22] Calamai, P. H., andMoré, J. J.,Projected Gradient Method for Linearly Constrained Problems, Mathematical Programming, Vol. 39, pp. 93–116, 1987. · Zbl 0634.90064 · doi:10.1007/BF02592073
[23] He, B.,A Class of Projection and Contraction Methods for Monotone Variational Inequalities, Applied Mathematics and Optimization (to appear). · Zbl 0865.90119
[24] Ahn, B. H.,Iterative Methods for Linear Complementarity Problem with Upper Bounds and Lower Bounds, Mathematical Programming, Vol. 26, pp. 295–315, 1983. · Zbl 0506.90081 · doi:10.1007/BF02591868
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.