×

A class of projection and contraction methods for monotone variational inequalities. (English) Zbl 0865.90119

Summary: We introduce a new class of iterative methods for solving the monotone variational inequalities \(u^*\in\Omega\), \((u-u^*)^Tf(u^*)\geq 0\), \(\forall u\in\Omega\). Each iteration of the methods consists essentially only of the computation of \(F(u)\), a projection to \(\Omega\), \(v:=P_\Omega[u-F(u)]\), and the mapping \(F(v)\). The distance of the iterates to the solution set monotonically converges to zero. Both the methods and the convergence proof are quite simple.

MSC:

90C30 Nonlinear programming
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
65K05 Numerical mathematical programming methods
Full Text: DOI

References:

[1] Bruck, R. E. (1975), An iterative solution of a variational inequality for certain monotone operators in Hilbert space, Bulletin of the American Mathematical Society, 81:890–892. · Zbl 0332.49005 · doi:10.1090/S0002-9904-1975-13874-2
[2] Dafermos, S. (1983), An iterative scheme for variational inequalities, Mathematical Programming, 26:40–47. · Zbl 0506.65026 · doi:10.1007/BF02591891
[3] Eaves, B. C. (1971), On the basic theorem of complementarity, Mathematical Programming, 1:68–75. · Zbl 0227.90044 · doi:10.1007/BF01584073
[4] Harker, P. T., Pang, J. S. (1990), Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications, Mathematical Programming, 48:161–220. · Zbl 0734.90098 · doi:10.1007/BF01582255
[5] He, B. S. (1992), A projection and contraction method for a class of linear complementarity problems and its application in convex quadratic programming, Applied Mathematics and Optimization, 25:247–262. · Zbl 0767.90086 · doi:10.1007/BF01182323
[6] He, B. S. (1994), A new method for a class of linear variational inequalities, Mathematical Programming, 66:137–144. · Zbl 0813.49009 · doi:10.1007/BF01581141
[7] He, B. S. (1994), Solving a class of linear projection equations, Numerische Mathematik, 68:71–80. · Zbl 0822.65040 · doi:10.1007/s002110050048
[8] Korpelevich, G. M. (1976), The extragradient method for finding saddle points and other problems, Matekon, 12:747–756. · Zbl 0342.90044
[9] Pang, J. S., (1985), Asymmetric variational inequality problems over product sets: applications and iterative methods, Mathematical Programming, 31:206–219. · Zbl 0578.49006 · doi:10.1007/BF02591749
[10] Pang, J. S. (1986), Inexact Newton methods for the nonlinear complementarity problem, Mathematical Programming, 36:54–71. · Zbl 0613.90097 · doi:10.1007/BF02591989
[11] Pang, J. S., Chan, D. (1982), Iterative methods for variational and complementarity problems, Mathematical Programming, 24:284–313. · Zbl 0499.90074 · doi:10.1007/BF01585112
[12] Sun, D. F. (1994), A projection and contraction method for the nonlinear complementarity problem and its extensions, Mathematica Numerica Sinica, 16:183–194. · Zbl 0900.65188
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.