×

Variational approaches for dynamics and time-finite-elements: Numerical studies. (English) Zbl 0717.73098

Summary: This paper presents general variational formulations for dynamical problems, which are easily implemented numerically. The development presents the relationship between the very general weak formulation arising from linear and angular momentum balance considerations, and well known variational principles. Two and three field mixed forms are developed from the general weak form. The variational principles governing large rotational motions are linearized and implemented in a time finite element framework, with appropriate expressions for the relevant “tangent” operators being derived. In order to demonstrate the validity of the various formulations, the special case of free rigid body motion is considered. The primal formulation is shown to have unstable numerical behavior, while the mixed formulation exhibits physically stable behavior. The formulations presented in this paper form the basis for continuing investigations into constrained dynamical systems and multi-rigid-body systems, which will be reported in subsequent papers.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74P10 Optimization of other properties in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
65K10 Numerical optimization and variational techniques
74H45 Vibrations in dynamical problems in solid mechanics

Software:

MESA VERDE
Full Text: DOI

References:

[1] Agrawal O. P.; ShabanaA. A. (1986): Automated visco-elastic analysis of large scale inertia-variant spacial vehicles. Comput. Struct. 22, 165-178 · doi:10.1016/0045-7949(86)90062-3
[2] Atluri S. N.; Amos A. K. (1987): Large space structures: dynamics and control. Berlin, Heidelberg, New York: Springer (Springer series comp. mechanics) · Zbl 0652.00017
[3] Bailey C. D. (1975): Application of hamilton’s law of varying action. AIAA J. 13, 1154-1157 · Zbl 0323.70020 · doi:10.2514/3.6966
[4] Banerjee A. K. (1987): Comment on ?relationship between Kane’s equations and the Gibbs-Appell equations?. J. Guid. Control Dyn. 10, 596 · doi:10.2514/3.56449
[5] Baruch M.; Riff R. (1982): Hamilton’s principle, Hamilton’s law-6 n correct formulations. AIAA J. 20, 687-692 · Zbl 0484.70016 · doi:10.2514/3.7937
[6] Belytschko T.; Hughes T. J. R. (1981). Computational methods in transient analysis. Amsterdam: North-Holland Publishing · Zbl 0533.73002
[7] Borri M.; Ghiringhelli G. L.; Lans M.; Mantegarra P.; Merlini T. (1985): Dynamic response of mechanical systems by a weak Hamiltonian formulation. Comput. Struct. 20, 495-508 · Zbl 0574.73091 · doi:10.1016/0045-7949(85)90098-7
[8] Desloge E. A. (1987): Relationship between Kane’s equations and the Gibbs-Appell equations. J. Guid. Control Dyn. 10, 120-122 · doi:10.2514/3.20192
[9] Geradin M.; Cardona A. (1989): Kinematics and dynamics of rigid and flexible mechanisms using finite elements and quaternion algebra. Comput. Mech. 4, 115-135 · Zbl 0666.73014 · doi:10.1007/BF00282414
[10] Haug E. J.; Wu S. C.; Yang S. M. (1986): Dynamics of mechanical systems with coulomb friction, stiction, impact and constraint addition-deletion ? I theory. Mech. Mach. Theory 21, 401-406 · doi:10.1016/0094-114X(86)90088-1
[11] Haug E. J.; McCullough M. K. (1986): A variational ? vector calculus approach to machine dynamics. J. Mech. Trans. Automat. Design 108, 25-30 · doi:10.1115/1.3260779
[12] Hughes P. C. (1986). Spacecraft attitude dynamics. New York: Wiley
[13] Iura M.; AtluriS. N. (1989): On a consistent theory and variational formulation of finitely stretched and rotated 3-d space-curved beams. Comput. Mech. 4, 73-88 · Zbl 0666.73015 · doi:10.1007/BF00282411
[14] Kane T. R.; LevinsonD. A. (1980): Formulation of equations of motion for complex space-craft. J. Guid. Control Dyn. 3, 99-112 · Zbl 0435.70027 · doi:10.2514/3.55956
[15] Kane T. R.; Likins P. W.; Levinson D. A. (1983). Spacecraft dynamics. New York: McGraw-Hill
[16] Kardestuncer H. (1987). Finite element handbook. New York: McGraw-Hill · Zbl 0638.65076
[17] Khulief Y. A.; Shabana A. A. (1986): Dynamics of multibody systems with variable kinematic structure. J. Mech. Trans. Automat. Design 108, 167-175 · Zbl 0589.70002 · doi:10.1115/1.3260798
[18] Kim S. S.; Shabana A. A.; Haug E. J. (1984): Automated Vehicle Dynamic Analysis with Flexible Components. J. Mech. Trans. Automat. Design 106, 126-132 · doi:10.1115/1.3258550
[19] Malkus D. S.; Hughes T. J. R. (1978): Mixed finite element methods-reduced and selective integration techniques: A unification of concepts. Comput. Methods Appl. Mech. Eng. 15, 63-81 · Zbl 0381.73075 · doi:10.1016/0045-7825(78)90005-1
[20] McCullough M. K.; Haug E. J. (1986): Dynamics of high mobility track vehicles. J. Mech. Trans. Automat. Design 108, 189-196 · doi:10.1115/1.3260801
[21] Meirovitch L.: Quinn R. D. (1987): Equations of motion for maneuvering flexible space-craft. J. Guid. Control Dyn. 10, 453-465 · Zbl 0634.70026 · doi:10.2514/3.20240
[22] Modi V. J.; Ibrahim A. M. (1987). On the transient dynamic analysis of flexible orbiting structures. Large space structures: dynamics and control. Berlin, Heidelberg, New York: Springer
[23] Pietraszkiewicz W.; Badur J. (1983): Finite rotations in the description of continuum deformation. Int. J. Eng. Sci. 21, 1097-1115 · Zbl 0521.73033 · doi:10.1016/0020-7225(83)90050-2
[24] Shi, G. (1988): Nonlinear static and dynamic analyses of large-scale lattice-type structures and nonlinear active control by Piezo actuators. Ph.D. Thesis, Georgia Institute of Technology
[25] Smith D. R.; Smith C. V. (1974): When is Hamilton’s principle an extremum principle? AIAA J. 12, 1573-1576 · Zbl 0296.70010 · doi:10.2514/3.49547
[26] Struelpnagel J. (1964): On the parametrization of the three-dimensional rotation group. SIAM Rev. 6, 422-430 · Zbl 0126.27203 · doi:10.1137/1006093
[27] Washizu K. (1980). Variational methods in elasticity and plasticity. 3rd ed. New York: Pergamon Press · Zbl 0448.73028
[28] Wittenburg, J.; Wolz, U. (1985): MESA VERDE: A symbolic program for nonlinear articulated rigid body dynamics. ASME 85-DET-151
[29] Zienkiewicz O. C.; Taylor R. L.; Too J. M. (1971): Reduced integration technique in general analysis of plates and shells. Int. J. Num. Methods Eng. 3, 275-290 · Zbl 0253.73048 · doi:10.1002/nme.1620030211
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.