×

An overview of approaches for the stable computation of hybrid BiCG methods. (English) Zbl 0856.65022

Some approaches that help to reduce the effects of local rounding errors in the BiCG iteration coefficients in hybrid schemes are presented. For example, a stabilization technique for the \(\text{BiCGstab}(l)\) method is proposed. Furthermore, look-ahead strategies for the determination of appropriate values for \(l\) in \(\text{BiCGstab}(l)\) are discussed. Some numerical examples show the advantages of the proposed methods.
Reviewer: M.Jung (Chemnitz)

MSC:

65F10 Iterative numerical methods for linear systems

Software:

BiCGstab; CGS
Full Text: DOI

References:

[1] Bank, R. E.; Chan, T. F., An analysis of the composite step biconjugate gradient method, Numer. Math., 66, 259-319 (1993) · Zbl 0802.65038
[2] Brezinski, C.; Redivo-Zaglia, M., Treatment of near breakdown in the CGS algorithm, Numer. Algorithms, 7, 33-74 (1994) · Zbl 0810.65028
[3] Brown, P. N., A theoretical comparison of the Arnoldi and GMRES algorithms, SIAM J. Sci. Statist. Comput., 12, 58-78 (1991) · Zbl 0719.65022
[4] Chan, T. F.; Gallopoulos, E.; Simoncini, V.; Szeto, T.; Tong, C. H., A quasi-minimal residual variant of the BI-CGSTAB algorithm for nonsymmetric systems, SIAM J. Sci. Comput., 15, 338-347 (1994) · Zbl 0803.65038
[5] Chan, T. F.; Szeto, T., A composite step conjugate gradient squared algorithm for solving nonsymmetric linear systems, Numer. Algorithms, 7, 12-32 (1994) · Zbl 0809.65026
[6] Eisenstat, S. C.; Elman, H. C.; Schultz, M. H., Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal., 20, 345-357 (1983) · Zbl 0524.65019
[7] Fletcher, R., Conjugate gradient methods for indefinite systems, (Lecture Notes in Mathematics, 506 (1976), Springer: Springer Berlin), 73-89 · Zbl 0326.65033
[8] Fokkema, D. R.; Sleijpen, G. L.G.; van der Vorst, H. A., Generalized conjugate gradient squared (1994), Department of Mathematics, University of Utrecht: Department of Mathematics, University of Utrecht Utrecht, Preprint 851 · Zbl 0856.65021
[9] also: J. Comput. Appl. Math. (to appear); also: J. Comput. Appl. Math. (to appear)
[10] Freund, R. W.; Gutknecht, M. H.; Nachtigal, N. M., An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices, SIAM J. Sci. Comput., 14, 137-158 (1993) · Zbl 0770.65022
[11] Freund, R. W.; Nachtigal, N. M., QMR: a quasi-minimal residual method for non-Hermitian linear systems, Numer. Math., 60, 315-339 (1991) · Zbl 0754.65034
[12] Greenbaum, A., Behavior of slightly perturbed Lanczos and conjugate gradient recurrences, Linear Algebra Appl., 113, 7-63 (1989) · Zbl 0662.65032
[13] Gutknecht, M. H., Variants of BiCGStab for matrices with complex spectrum, SIAM J. Sci. Comput., 14, 1020-1033 (1993) · Zbl 0837.65031
[14] Joubert, W., Generalized conjugate gradient and Lanczos methods for the solution of nonsymmetric systems of linear equations, (Ph.D. Thesis (1990), Center for Numerical Analysis, University of Austin: Center for Numerical Analysis, University of Austin Austin, TX)
[15] Neylon, K. J., Numerical experiments with Bi-CGSTAB on an advection-diffusion problem, (Numerical Analysis Report 8/93 (1993), Department of Mathematics, University of Reading: Department of Mathematics, University of Reading Reading, MA) · Zbl 0819.65042
[16] Parlett, B. N.; Taylor, D. R.; Liu, Z. A., A look-ahead Lanczos algorithm for unsymmetric matrices, Math. Comput., 44, 105-124 (1985) · Zbl 0564.65022
[17] Pommerell, C., Solution of Large Unsymmetric Systems of Linear Equations, (Series in Micro Electronics, 17 (1992), Hartung-Gorre Verlag: Hartung-Gorre Verlag Konstanz)
[18] Saad, Y., Krylov subspace methods for solving large unsymmetric linear systems, Math. Comput., 37, 105-126 (1982) · Zbl 0474.65019
[19] Saad, Y.; Schultz, M. H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7, 856-869 (1986) · Zbl 0599.65018
[20] Sleijpen, G. L.G.; Fokkema, D. R., BiCGstab \((l)\) for linear equations involving matrices with complex spectrum, Electron. Trans. Numer. Anal., 1, 11-32 (1993) · Zbl 0820.65016
[21] Sleijpen, G. L.G.; Van der Vorst, H. A., Maintaining convergence properties of BiCGstab methods in finite precision arithmetic, Numer. Algorithms, 10, 203-223 (1995) · Zbl 0837.65030
[22] Sleijpen, G. L.G.; Van der Vorst, H. A., Reliable updated residuals in hybrid Bi-CG methods (1994), Department of Mathematics, University Utrecht: Department of Mathematics, University Utrecht Utrecht, Preprint 886 · Zbl 0842.65018
[23] also: Computing (to appear); also: Computing (to appear)
[24] Sleijpen, G. L.G.; van der Vorst, H. A.; Fokkema, D. R., BiCGstab \((l)\) and other hybrid Bi-CG methods, Numer. Algorithms, 7, 75-109 (1994) · Zbl 0810.65027
[25] Sonneveld, P., CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 10, 36-52 (1989) · Zbl 0666.65029
[26] Tong, C., A comparative study of preconditioned Lanczos methods for nonsymmetric linear systems, (Tech. Rept. SAND91-8240 (1992), Sandia National Laboratory: Sandia National Laboratory Livermore)
[27] van der Vorst, H. A., Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13, 631-644 (1992) · Zbl 0761.65023
[28] van der Vorst, H. A.; Vuik, C., The superlinear convergence behaviour of GMRES, J. Comput. Appl. Math., 48, 327-341 (1993) · Zbl 0797.65026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.