×

Scale-dependent intermittency and coherence in turbulence. (English) Zbl 0667.76077

The statistics of isotropic homogeneous decaying at moderately large Reynolds number are studied in detail using a Fourier-space band- filtering method on flow fields obtained by direct numerical simulation. Two distinct aspects of the non-Gaussianity of the turbulent field are discussed. The nonzero derivative skewness, related to energy transfer, is shown to be essentially a large-scale property, while intermittency measured by the flatness factor is basically a dissipation range phenomenon. In addition, elongated coherent structures of single velocity components at inertial range scales are shown to align with the velocity component, leading to depletion of the nonlinear interaction. Finally, it is shown that the statistics of the dissipation may be simply related to the statistics of the spatial derivative and small-scale velocity fields.

MSC:

76F05 Isotropic turbulence; homogeneous turbulence
76M99 Basic methods in fluid mechanics
Full Text: DOI

References:

[1] Batchelor, G. K., and Townsend, A. A. (1949).Proc. R. Soc. London, Ser. A 199, 238. · Zbl 0036.25602 · doi:10.1098/rspa.1949.0136
[2] Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X.-Z., Zaleski, S., and Zanetti, G. (1988).J. Fluid Mech, submitted.
[3] Champagne, F. H. (1978).J. Fluid Mech. 86, 67. · doi:10.1017/S0022112078001019
[4] Frenkiel, F. N., and Klebanoff, P. S. (1971).J. Fluid Mech. 48, 183. · doi:10.1017/S002211207100154X
[5] Frisch, U., Sulem, P.-L., and Nelkin, M. (1978).J. Fluid Mech. 87, 719. · Zbl 0395.76051 · doi:10.1017/S0022112078001846
[6] Gollub, J. (1988). Private communication.
[7] Kerr, R. M. (1985).J. Fluid Mech. 153, 31. · Zbl 0587.76080 · doi:10.1017/S0022112085001136
[8] Kida, S., and Mirakami, Y. (1988). Fluid Dynamics Research, submitted.
[9] Kolmogorov, A. N. (1941).C. R. Acad. Sci. USSR 30(301), 538.
[10] Kolmogorov, A. N. (1962).J. Fluid Mech. 13, 82. · Zbl 0112.42003 · doi:10.1017/S0022112062000518
[11] Kraichnan, R. H. (1974).J. Fluid Mech. 62, 305. · Zbl 0273.76037 · doi:10.1017/S002211207400070X
[12] Kuo, A. Y.-S., and Corrsin, S. (1971).J. Fluid Mech. 50, 285. · doi:10.1017/S0022112071002581
[13] Mandelbrot, B. (1974).J. Fluid Mech. 62, 331. · Zbl 0289.76031 · doi:10.1017/S0022112074000711
[14] Monin, A. S., and Yaglom, A. M. (1975).Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 2, MIT Press, Cambridge, Massachusetts.
[15] Novikov, E. A., and Steward, R. W. (1964).Izv. Akad. Nauk USSR, Ser. Geophy., No. 3, 408.
[16] Obukhov, A. M. (1962).J. Fluid Mech. 12, 77; (1962).J. Geophys. Res. 67, 3011. · Zbl 0112.42002 · doi:10.1017/S0022112062000506
[17] Panda, R., Sonnad, V., Clementi, E., Orszag, S. A., and Yakhot, V. (1988).Phys. Fluids, submitted.
[18] She, Z.-S., Jackson, E., and Orszag, S. A. (1989).The Legacy of John von Neumann, Glimm and Impagliazzo (eds.),Proceedings of Symposia in Pure Mathematics, to appear.
[19] Tavoularis, S., Bennett, J. C., and Corrsin, S. (1978).J. Fluid Mech. 88, 63. · doi:10.1017/S0022112078001986
[20] Yaglom, A. M. (1966).Dokl. Akad. Nauk SSSR 166, 1.
[21] Yakhot, V., and Orszag, S. A. (1986).J. Sci. Comput. 1, 3. · Zbl 0648.76040 · doi:10.1007/BF01061452
[22] Yakhot, V., She, Z.-S., and Orszag, S. A. (1989).Phys. Fluids, to appear.
[23] Yamamoto, K., and Hosokawa, I. (1988).J. Phys. Soc. Jpn. 57(5), 1531.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.