×

Classical set convergences and topologies. (English) Zbl 0832.54012

A great number of different topologies have been defined for the hyperspace of (nonempty) closed subsets of a metric space. The topologies referred to in the title are those which, in the author’s words, “have been ‘on the market’ for a long time,” namely, the Hausdorff, Attouch- Wets, Vietoris, Fell, Wijsman, and Mosco topologies (the last one being for the hyperspace of closed convex subsets of a reflexive Banach space). Most of the results in the paper are also classical. The presentation of how these topologies compare or fail to compare is streamlined by an efficient use of upper and lower topologies. Also compared are the Kuratowski and Kuratowski-Mosco convergences. The latter convergence is shown not to be topological if the base space is infinite-dimensional (a new result). The paper also explores the (complete) metrizability and related properties of the various hyperspaces.
A more detailed version of this paper is forthcoming under the title “Classical hyperspace topologies and convergences”.

MSC:

54B20 Hyperspaces in general topology
54A10 Several topologies on one set (change of topology, comparison of topologies, lattices of topologies)
Full Text: DOI

References:

[1] Aze, D. and Penot, J. P.: Operations on convergent families of sets and functions,Optimization 21 (1990), 521-534. · Zbl 0719.49013 · doi:10.1080/02331939008843576
[2] Attouch, H.:Variational Convergence for Functions and Operators, Pitman, New York, 1984. · Zbl 0561.49012
[3] Attouch, H., Lucchetti, R., and Wets, R. J-B.: The topology of the ?-Hausdorff distances,Ann. Mat. Pura Appl. 4 160 (1992), 303-320. · Zbl 0769.54009 · doi:10.1007/BF01764131
[4] Beer, G.: Hyperspaces of a metric space: an overview, Pubblicazioni Dip. Mat. Univ. Napoli, 1990.
[5] Beer, G.: Metric spaces with nice closed balls and distance functions for closed sets,Bull. Austral. Math. Soc. 35 (1987), 81-96. · Zbl 0588.54014 · doi:10.1017/S000497270001306X
[6] Beer, G.: On Mosco convergence of convex sets,Bull. Austral. Math. Soc. 38 (1988), 239-253. · Zbl 0669.52002 · doi:10.1017/S0004972700027519
[7] Beer, G.: Convergence of continuous linear functionals and their level sets,Archiv Math. 52 (1989), 482-491. · doi:10.1007/BF01198356
[8] Beer, G.: A Polish topology for the closed subsets of a Polish space,Proc. Amer. Math. Soc. 113 (1991), 1123-1133. · Zbl 0776.54011 · doi:10.1090/S0002-9939-1991-1065940-6
[9] Beer, G.: Mosco convergence and weak topologies for convex sets and functions,Mathematika 38 (1991), 89-104. · Zbl 0762.46005 · doi:10.1112/S0025579300006471
[10] Beer, G. and Borwein, J.: Mosco convergence and reflexivity,Proc. Amer. Math. Soc. 109 (1990), 427-436. · doi:10.1090/S0002-9939-1990-1012924-9
[11] Beer, G., Lechicki, A., Levi, S., and Naimpally, S.: Distance functionals and the suprema of hyperspace topologies,Ann. Mat. Pura Appl. 4 162 (1992), 367-381. · Zbl 0774.54004 · doi:10.1007/BF01760016
[12] Beer, G. and Lucchetti, R.: Weak topologies for the closed subsets of a metrizable space, to appear inTrans. Amer. Math. Soc. · Zbl 0810.54011
[13] Borwein, J. and Fitzpatrick, S.: Mosco convergence and the Kadec property,Proc. Amer. Math. Soc. 101 (1987), 168-172. · Zbl 0672.46007
[14] Castaing, C. and Valadier, M.:Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer-Verlag, Berlin, 1977. · Zbl 0346.46038
[15] Francaviglia, S., Lechicki, A., and Levi, S.: Quasi-uniformization of hyperspaces and convergence of nets of semicontinuous multifunctions,J. Math. Anal. Appl. 112 (1985), 347-370. · Zbl 0587.54003 · doi:10.1016/0022-247X(85)90246-X
[16] Klein, E. and Thompson, A.:Theory of Correspondences, Wiley, New York, 1984. · Zbl 0556.28012
[17] Lechicki, A. and Levi, S.: Wijsman convergence in the hyperspace of a metric space,Bull. Un. Mat. Ital. 5B (1987), 435-452. · Zbl 0655.54007
[18] Lucchetti, R. and Torre, A.: Classical hyperspace topologies and convergences, to appear. · Zbl 0832.54012
[19] Michael, E.: Topologies on spaces of subsets,Trans. Amer. Math.Soc. 72 (1951), 152-182. · Zbl 0043.37902 · doi:10.1090/S0002-9947-1951-0042109-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.