×

Mosco convergence and weak topologies for convex sets and functions. (English) Zbl 0762.46005

Let \({\mathcal C}(X)\) denote the space of closed convex sets in a Banach space. A sequence \((C_ n)\) in \({\mathcal C}(X)\) is said to be Mosco convergent to a closed set \(C\) if (1) every \(c\in C\) is a strong limit of a sequence \((c_ n)\), \(c_ n\in C_ n\); (2) if a vector \(x\) is the weak limit of some sequence \(c_ k\in C_{n(k)}\), where \(n(k)\) is an increasing sequence of indices, then \(x\in C\).
This convergence can be topologized, and that is called the Mosco topology \(\tau_ M\). In a reflexive Banach space, \(\tau_ M\) contains the Wijsman topology \(\tau_ W\) (\(\tau_ W\) is the weakest topology on \({\mathcal C}(X)\) making the distance functionals \(C \mapsto d(x,C)\) continuous, for every \(x\in X\)). Besides displaying various properties of the Mosco topology, the article compares \(\tau_ M\) and \(\tau_ W\). In particular, Theorem 2.5 says that, in a reflexive Banach space, \(\tau_ W=\tau_ M\) if and only if the dual norm on \(X^*\) is a Kadec norm (any weak\(^*\) convergent net in the dual sphere converges strongly). Additional characterizing conditions in terms of continuity of certain transformations of convex sets (e.g., polar set, translation, etc.) are also given.
Let \(\Gamma(X)\) denote the space of proper lower semicontinuous convex functions (identifiable with epigraphs \(\text{epi\,}f =\{(x,a):x\in X, a\in {\mathbf R}, a \geq f(x)\}\)), equipped with the Mosco topology. In the reflexive setting this ensures the lower semicontinuity of certain multifunctions \(\Delta\), related to the Fenchel transform, on \(\Gamma(X)\). The important fact is that \(\tau_ M\) is the weakest topology with this property (Lemma 3.4 and Theorem 3.5).
Reviewer: J.Szulga (Auburn)

MSC:

46B20 Geometry and structure of normed linear spaces
46G05 Derivatives of functions in infinite-dimensional spaces
49J45 Methods involving semicontinuity and convergence; relaxation
Full Text: DOI

References:

[1] DOI: 10.2307/2047444 · Zbl 0672.46007 · doi:10.2307/2047444
[2] DOI: 10.1016/0022-247X(82)90187-1 · Zbl 0487.49013 · doi:10.1016/0022-247X(82)90187-1
[3] DOI: 10.1016/0022-247X(77)90060-9 · Zbl 0359.54005 · doi:10.1016/0022-247X(77)90060-9
[4] Phelps, Lecture notes in mathematics #1364 (1989)
[5] DOI: 10.1016/0022-247X(71)90200-9 · Zbl 0253.46086 · doi:10.1016/0022-247X(71)90200-9
[6] DOI: 10.1016/0001-8708(69)90009-7 · Zbl 0192.49101 · doi:10.1016/0001-8708(69)90009-7
[7] Lechicki, Bull. Un. Mat. Ital 5-B pp 435– (1987)
[8] Kuratowski, Topology (1966)
[9] Klein, Theory of Correspondences (1984)
[10] DOI: 10.2307/2048005 · Zbl 0763.46006 · doi:10.2307/2048005
[11] DOI: 10.2307/2047702 · Zbl 0681.46014 · doi:10.2307/2047702
[12] Beer, Archiv derMat. 55 pp 285– (1990)
[13] DOI: 10.1080/01630568908816288 · Zbl 0696.46010 · doi:10.1080/01630568908816288
[14] DOI: 10.2307/2047601 · Zbl 0691.46006 · doi:10.2307/2047601
[15] DOI: 10.1017/S0004972700027519 · Zbl 0669.52002 · doi:10.1017/S0004972700027519
[16] Zolezzi, Mathematical control theory, Banach center publications (1985)
[17] Attouch, Variational Convergence for Functions and Operators (1984) · Zbl 0561.49012
[18] DOI: 10.1016/0021-9045(84)90003-0 · Zbl 0545.41042 · doi:10.1016/0021-9045(84)90003-0
[19] Sonntag, Convergence au sens de Mosco, théorie et applications à l’approximation des solutions d’inéquations. Thèse d’Etat (1982)
[20] Kenderov, C. R. Acad. Bulgare des Sci. 37 pp 297– (1984)
[21] Holmes, A course in optimization and best approximation, Lecture notes in mathematics #257 (1972) · Zbl 0235.41016 · doi:10.1007/BFb0059450
[22] Hess, Contributions à l’étudé, de la mesurabilité, de la loi de probabilité, et de la convergence des multifunctions, thèse d’ètat (1986)
[23] DOI: 10.1016/0022-247X(85)90246-X · Zbl 0587.54003 · doi:10.1016/0022-247X(85)90246-X
[24] Cornet, Topologies sur les fermés d’un espace métrique, Cahiers de mathématiques de la decision #7309 (1973)
[25] DOI: 10.2307/2043603 · Zbl 0506.54016 · doi:10.2307/2043603
[26] DOI: 10.2307/2033889 · Zbl 0141.11801 · doi:10.2307/2033889
[27] DOI: 10.1016/0021-9045(82)90022-3 · Zbl 0496.49009 · doi:10.1016/0021-9045(82)90022-3
[28] Borwein, Pacific J. Math. 103 pp 307– (1982) · Zbl 0525.49010 · doi:10.2140/pjm.1982.103.307
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.