×

Modules over the 4-dimensional Sklyanin algebra. (English) Zbl 0823.17020

Let \(E\) be an elliptic curve, \(j\) an embedding of \(E\) in \(\mathbb{P}^ 3\) and \(\tau \in E\) not of order 4. The authors show that many algebraic properties of the Sklyanin algebra \(A\) associated to this data, first defined in [E. K. Sklyanin, Funct. Anal. Appl. 16, 263-270 (1983); translation from Funkts. Anal. Prilozh. 16, 27-34 (1982; Zbl 0513.58028)], have geometric interpretations in terms of \(E,j, \tau\). They first prove the equivalence between the original definition and a geometric one given in the present paper. A point, resp. line, plane, module is a graded module whose Hilbert series coincides with the Hilbert series of a polynomial ring in 1, resp. 2, 3, variables. One of the main results of this article is the characterization of the Cohen-Macaulay (graded) modules over \(A\) of multiplicity 1 and Gelfand-Kirillov dimension 1,2,3: they are precisely shifts of point, resp. line, plane, modules. It is also proved that line modules are in bijective correspondence with lines in \(\mathbb{P}^ 3\) secant to \(E\). (Analogously, it was proved in [the second author and J. T. Stafford [Compos. Math. 83, 259-289 (1992; Zbl 0758.16001)] that point modules are in bijective correspondence with points of \(E\) plus 4 more points; these 4 points also play a role in the new definition of \(A\) and are, in fact, the only points which lie on infinitely many secants of \(E)\).

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
16W50 Graded rings and modules (associative rings and algebras)
16E10 Homological dimension in associative algebras
16P40 Noetherian rings and modules (associative rings and algebras)
14H52 Elliptic curves

References:

[1] ARTIN (M.) and SCHELTER (W.F.) . - Graded algebras of global dimension 3 , Advances in Math., t. 66 n^\circ 2, 1987 , p. 171-216. MR 88k:16003 | Zbl 0633.16001 · Zbl 0633.16001 · doi:10.1016/0001-8708(87)90034-X
[2] ARTIN (M.) , TATE (J.) and VAN DEN BERGH (M.) . - Some Algebras Associated to Automorphisms of Elliptic Curves , The Grothendieck Festschrift. - P. Cartier et al. Editors, Birkhauser, 1990 . MR 92e:14002 | Zbl 0744.14024 · Zbl 0744.14024
[3] ARTIN (M.) , TATE (J.) and VAN DEN BERGH (M.) . - Modules over regular algebras of dimension 3 , Invent. Math., t. 106, 1991 , p. 335-388. MR 93e:16055 | Zbl 0763.14001 · Zbl 0763.14001 · doi:10.1007/BF01243916
[4] ARTIN (M.) and VAN DEN BERGH (M.) . - Twisted homogeneous coordinate rings , J. of Algebra, t. 133, 1990 , p. 249-271. MR 91k:14003 | Zbl 0717.14001 · Zbl 0717.14001 · doi:10.1016/0021-8693(90)90269-T
[5] BJÖRK (J.E.) . - Rings of Differential Operators . - North-Holland, 1979 . Zbl 0499.13009 · Zbl 0499.13009
[6] BJÖRK (J.E.) . - The Auslander Condition on Noetherian Rings , Séminaire Dubreil-Malliavin 1987 - 1988 , Lect. Notes in Math. 1404, Springer-Verlag, 1989 , p. 137-173. Zbl 0696.16006 · Zbl 0696.16006
[7] BJÖRK (J.E.) and EKSTRÖM (E.K.) . - Filtered Auslander-Gorenstein Rings , Colloque en l’honneur de J. Dixmier. - Birkhauser, 1991 . · Zbl 0733.16016
[8] EKSTRÖM (E.K.) . - The Auslander condition on graded and filtered noetherian rings , Séminaire Dubreil-Malliavin 1987 - 1988 , Lect. Notes in Math. 1404, Springer-Verlag, 1989 , p. 220-245. Zbl 0691.16020 · Zbl 0691.16020
[9] KRAUSE (G.) and LENAGAN (T.H.) . - Growth of Algebras and Gelfand-Kirillov Dimension . - Research Notes in Math. 116, Pitman, London, 1985 . MR 86g:16001 | Zbl 0564.16001 · Zbl 0564.16001
[10] LEVASSEUR (T.) . - Complexe bidualisant en algèbre non-commutative , Séminaire Dubreil-Malliavin 1983 - 1984 , Lect. Notes in Math. 1146, Springer Verlag, 1985 , p. 270-287. MR 88f:16031 | Zbl 0594.13015 · Zbl 0594.13015
[11] LEVASSEUR (T.) . - Some properties of non-commutative regular graded rings , Glasgow J. Math., to appear. Zbl 0824.16032 · Zbl 0824.16032 · doi:10.1017/S0017089500008843
[12] LI HUISHI . - Non-commutative Zariskian rings , Ph. D. Thesis, U.I.A. Antwerp, 1989 . · Zbl 0691.16003
[13] MUMFORD (D.) . - Varieties defined by quadratic relations , in Questions on Algebraic Varieties. - Ed. E. Marchionne, C.I.M.E., III Ciclo, Varenna 1969 , Roma, 1970 . Zbl 0198.25801 · Zbl 0198.25801
[14] ODESSKII (A.V.) and FEIGIN (B.L.) . - Sklyanin algebras associated with an elliptic curve (in Russian) . - Preprint, 1989 .
[15] ODESSKII (A.V.) and FEIGIN (B.L.) . - Elliptic Sklyanin algebras (in Russian) , Funk. Anal. Prilozh., t. 23 (3), 1989 , p. 45-54. MR 91e:16037
[16] SALMON (G.) . - A Treatise on Analytic Geometry of Three Dimensions , 7th Ed. - Chelsea Publ. Co., New York, 1927 . · JFM 55.0996.05
[17] SKLYANIN (E.K.) . - Some algebraic structures connected to the Yang-Baxter equation , Func. Anal. Appl., t. 16, 1982 , p. 27-34. MR 84c:82004 | Zbl 0513.58028 · Zbl 0513.58028 · doi:10.1007/BF01077848
[18] SKLYANIN (E.K.) . - Some algebraic structures connected to the Yang-Baxter equation . Representations of Quantum algebras, Func. Anal. Appl., t. 17, 1983 , p. 273-284. MR 85k:82011 | Zbl 0536.58007 · Zbl 0536.58007 · doi:10.1007/BF01076718
[19] SMALL (L.W.) and WARFIELD (R.B.) . - Prime Affine Algebras of Gelfand-Kirillov Dimension One , J. Algebra, t. 91, 1984 , p. 386-389. MR 86h:16006 | Zbl 0545.16011 · Zbl 0545.16011 · doi:10.1016/0021-8693(84)90110-8
[20] SMITH (S.P.) . - A remark on Gelfand-Kirillov Dimension , Preprint, 1990 .
[21] SMITH (S.P.) and STAFFORD (J.T.) . - Regularity of the four dimensional Sklyanin algebra , Compositio Math., to appear. Numdam | Zbl 0758.16001 · Zbl 0758.16001
[22] STAFFORD (J.T.) . - Stable Structure of Non-commutative Noetherian Rings , II, J. Algebra, t. 52, 1978 , p. 218-235. MR 58 #16763 | Zbl 0391.16010 · Zbl 0391.16010 · doi:10.1016/0021-8693(78)90270-3
[23] STAFFORD (J.T.) . - Regularity of Algebras related to the Sklyanin algebra . - Preprint, 1990 .
[24] WEBER (H.M.) . - Lehrbuch der Algebra , Vol. 3. - Chelsea Publ. Co., New York, 1961 .
[25] YEKUTIELI (A.) . - The Residue Complex and Duality for some non commutative rings . - Ph. D. Thesis, MIT, 1990 .
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.