×

Classical limit of the quantized hyperbolic toral automorphisms. (English) Zbl 0822.58022

Summary: The canonical quantization of any hyperbolic symplectomorphism \(A\) of the 2-torus yields a periodic unitary operator on an \(N\)-dimensional Hilbert space, \(N = {1\over h}\). We prove that this quantum system becomes ergodic and mixing at the classical limit \((N \to \infty\), \(N\) prime) which can be interchanged with the time-average limit. The recovery of the stochastic behaviour out of a periodic one is based on the same mechanism under which the uniform distribution of the classical periodic orbits reproduces the Lebesgue measure: the Wigner functions of the eigenstates, supported on the classical periodic orbits, are indeed proved to become uniformly spread in phase space.

MSC:

53D50 Geometric quantization
81S20 Stochastic quantization
81S30 Phase-space methods including Wigner distributions, etc. applied to problems in quantum mechanics
Full Text: DOI

References:

[1] [AA] Arnold, V.I., Avez, A.: Ergodic Problems in Classical Mechanics. New York: Benjamin, 1968
[2] [Ap] Apostol, T.: Introduction to Analytic Number theory. Berlin, Heidelber, New York: Springer, 1976 · Zbl 0335.10001
[3] [BH] Hannay, J. H., Berry, M.V.: Quantization of linear maps on a torus-Fresnel diffraction by a periodic grating. Physica D1, 267–291 (1980) · Zbl 1194.81107 · doi:10.1016/0167-2789(80)90026-3
[4] [BV] Bartuccelli, F., Vivaldi, F.: Ideal Orbits of Toral Automorphisms. Physica D39, 194 (1989) · Zbl 0694.58033 · doi:10.1016/0167-2789(89)90004-3
[5] [BNS] Benatti, R., Narnhofer, H., Sewell, G. L.: A non-commutative version of the Arnold cat map. Lett. Math. Phys.21, 157–172 (1991) · Zbl 0722.46033 · doi:10.1007/BF00401650
[6] [CdV] Colin de Verdiere, Y.: Ergodicité et functions propres du Laplacien. Commun. Math. Phys.102, 497–502 (1985) · Zbl 0592.58050 · doi:10.1007/BF01209296
[7] [Ch] Chandrasekharan, K.: Introduction to Analytic Number Theory. Berlin, Heidelberg, New York: Springer, 1968 · Zbl 0169.37502
[8] [Da] Davenport, H.: On certain exponential sums. Reine, J. Angewandte Mathematik78, 158–176 (1932) · JFM 59.0370.03
[9] [DE] Degli Esposti, M.: Quantization of the orientation preserving automorphisms of the torus. Ann. Inst. Pincaré, H.58, 323–341 (1993) · Zbl 0777.58017
[10] [De1] Deligne, P.: La conjecture de Weil I. Pub. Math. I.H.E.S.48, 273–308 (1974)
[11] [De2] Deligne, P.: Cohomologie Etale. Lecture Notes in Mathematics569, (1974)
[12] [E1] Eckhardt, B.: Exact eigenfunctions for a quantized map. J. Phys. A19, 1823–1833 (1986) · Zbl 0617.58014 · doi:10.1088/0305-4470/19/10/023
[13] [E2] Eckhardt, B.: Quantum mechanics of classically non-integrable systems. Phys. Reports163, 205–297 (1988) · doi:10.1016/0370-1573(88)90130-5
[14] [F] Folland, G.: Harmonic Analysis in Phase Space, Princeton: Princeton University Press, 1988 · Zbl 0682.43001
[15] [FRM] Ford, J., Mantica, G., Ristov, G.H.: The Arnol’d cat: Failure of the correspondence principle. Physica D25, 105–135 (1991)
[16] [H] Hasse, H.: Number Theory, Berlin, Heidelberg, New York: Springer, 1980 · Zbl 0423.12002
[17] [HMR] Helffer, B., Martinez, A., Robert, D.: Ergodicité et limite semi-classique. Commun. Math. Phys.09, 313–326 (1987) · Zbl 0624.58039 · doi:10.1007/BF01215225
[18] [I] Isola, S.: {\(\xi\)}-function and distribution of periodic orbits of toral automorphisms. Europhys. Lett.11, 517–522 (1990) · doi:10.1209/0295-5075/11/6/006
[19] [Ka1] Katz, N.: Gauss Sums, Kloosterman Sums, and Monodromy Groups. Princeton, NJ: Princeton University Press, 1988 · Zbl 0675.14004
[20] [Ka2] Katz, N. Sommes Exponentielles. Asterisque79, 1980
[21] [Ke1] Keating, J.: Ph. D. thesis, University of Bristol (1989)
[22] [Ke2] Keating, J.: Asymptotic properties of the periodic orbits of the cat map. Nonlinearity4, 277–307 (1991) · Zbl 0726.58036 · doi:10.1088/0951-7715/4/2/005
[23] [Ke3] Keating, J.: The cat maps: Quantum mechanics and classical motion. Nonlinearity4, 309–341 (199) · Zbl 0726.58037 · doi:10.1088/0951-7715/4/2/006
[24] [Kn] Knabe, S.: On the quantization of the Arnold cat map. J. Phys. A23, 2013–2025 (1990) · Zbl 0715.58014 · doi:10.1088/0305-4470/23/11/025
[25] [LV] Leboeuf, J., Voros, A.: Chaos revealing multiplicative represenation of quantum eigenstates. J. Phys. A23, 1765–1773 (1990) · doi:10.1088/0305-4470/23/10/017
[26] [M] Mañe, R.: Ergodic Theory and Differentiable Dynamics. Berlin, Heidelberg, New York: Springer, 1987
[27] [N] Narnhofer, H.: Quantized Arnold cats can be entropicK-systems. J. Math. Phys.33, 1502–1510 (1992) · Zbl 0755.58035 · doi:10.1063/1.529674
[28] [PV] Percival, I., Vivaldi, F.: Arithmetical properties of strongly chaotic motions. Physica D25, 105–130 (1987) · Zbl 0616.58039 · doi:10.1016/0167-2789(87)90096-0
[29] [PP] Parry, W., Pollicott, M.: Zea functions and the periodic orbit structure of hyperbolic dynamics, Astérisque187–188 (1990)
[30] [RM] Ram Murthy, M.: Artin’s conjecture for primitive roots. Mathematical Intelligencer10, 59–70 (1988) · Zbl 0656.10044 · doi:10.1007/BF03023749
[31] [S] Schnirelman, A.: Ergodic properties of the eigenfunctions. Usp. Math. Nauk29, 181–182 (1974)
[32] [Sa] Sarnak, P.: Arithmetic Quantum Chaos. Tel Aviv Lectures 1993 (to apper)
[33] [Sc] Schmidt, W.: Equations over finite fields. An elementary approach. Vol.536, Lecture Notes in Mathematis, 1976
[34] [VN] Von Neumann, J.: Beweis des Ergoidensatzes und desH-Theorems in der Neuen Mechanik. Zschr. f. Physik57, 30–70 (1929) · doi:10.1007/BF01339852
[35] [Z] Zelditch, S.: Uniform distribution of eigenfunction on compact hyperbolic surfaces. Duke Math. J.55, 919–941 (1987) · Zbl 0643.58029 · doi:10.1215/S0012-7094-87-05546-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.