Skip to main content
Log in

Classical limit of the quantized hyperbolic toral automorphisms

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

The canonical quantization of any hyperbolic symplectomorphismA of the 2-torus yields a periodic unitary operator on aN-dimenional Hilbert space,N=1/h. We prove that this quantum system becomes ergodic and mixing at the classical limit (N→∞,N prime) which can be interchanged with the time-average limit. The recovery of the stochastic behaviour out of a periodic one is based on the same mechanism under which the uniform distribution of the classical periodic orbits reproduces the Lebesgue measure: the Wigner functions of the eigenstates, supported on the classical periodic orbits, are indeed proved to become uniformly speread in phase space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [AA] Arnold, V.I., Avez, A.: Ergodic Problems in Classical Mechanics. New York: Benjamin, 1968

    Google Scholar 

  • [Ap] Apostol, T.: Introduction to Analytic Number theory. Berlin, Heidelber, New York: Springer, 1976

    Google Scholar 

  • [BH] Hannay, J. H., Berry, M.V.: Quantization of linear maps on a torus-Fresnel diffraction by a periodic grating. Physica D1, 267–291 (1980)

    Google Scholar 

  • [BV] Bartuccelli, F., Vivaldi, F.: Ideal Orbits of Toral Automorphisms. Physica D39, 194 (1989)

    Google Scholar 

  • [BNS] Benatti, R., Narnhofer, H., Sewell, G. L.: A non-commutative version of the Arnold cat map. Lett. Math. Phys.21, 157–172 (1991)

    Article  Google Scholar 

  • [CdV] Colin de Verdiere, Y.: Ergodicité et functions propres du Laplacien. Commun. Math. Phys.102, 497–502 (1985)

    Article  Google Scholar 

  • [Ch] Chandrasekharan, K.: Introduction to Analytic Number Theory. Berlin, Heidelberg, New York: Springer, 1968

    Google Scholar 

  • [Da] Davenport, H.: On certain exponential sums. Reine, J. Angewandte Mathematik78, 158–176 (1932)

    Google Scholar 

  • [DE] Degli Esposti, M.: Quantization of the orientation preserving automorphisms of the torus. Ann. Inst. Pincaré, H.58, 323–341 (1993)

    Google Scholar 

  • [De1] Deligne, P.: La conjecture de Weil I. Pub. Math. I.H.E.S.48, 273–308 (1974)

    Google Scholar 

  • [De2] Deligne, P.: Cohomologie Etale. Lecture Notes in Mathematics569, (1974)

  • [E1] Eckhardt, B.: Exact eigenfunctions for a quantized map. J. Phys. A19, 1823–1833 (1986)

    Google Scholar 

  • [E2] Eckhardt, B.: Quantum mechanics of classically non-integrable systems. Phys. Reports163, 205–297 (1988)

    Article  Google Scholar 

  • [F] Folland, G.: Harmonic Analysis in Phase Space, Princeton: Princeton University Press, 1988

    Google Scholar 

  • [FRM] Ford, J., Mantica, G., Ristov, G.H.: The Arnol'd cat: Failure of the correspondence principle. Physica D25, 105–135 (1991)

    Google Scholar 

  • [H] Hasse, H.: Number Theory, Berlin, Heidelberg, New York: Springer, 1980

    Google Scholar 

  • [HMR] Helffer, B., Martinez, A., Robert, D.: Ergodicité et limite semi-classique. Commun. Math. Phys.09, 313–326 (1987)

    Article  Google Scholar 

  • [I] Isola, S.: ξ-function and distribution of periodic orbits of toral automorphisms. Europhys. Lett.11, 517–522 (1990)

    Google Scholar 

  • [Ka1] Katz, N.: Gauss Sums, Kloosterman Sums, and Monodromy Groups. Princeton, NJ: Princeton University Press, 1988

    Google Scholar 

  • [Ka2] Katz, N. Sommes Exponentielles. Asterisque79, 1980

  • [Ke1] Keating, J.: Ph. D. thesis, University of Bristol (1989)

  • [Ke2] Keating, J.: Asymptotic properties of the periodic orbits of the cat map. Nonlinearity4, 277–307 (1991)

    Article  Google Scholar 

  • [Ke3] Keating, J.: The cat maps: Quantum mechanics and classical motion. Nonlinearity4, 309–341 (199)

    Article  Google Scholar 

  • [Kn] Knabe, S.: On the quantization of the Arnold cat map. J. Phys. A23, 2013–2025 (1990)

    Google Scholar 

  • [LV] Leboeuf, J., Voros, A.: Chaos revealing multiplicative represenation of quantum eigenstates. J. Phys. A23, 1765–1773 (1990)

    Google Scholar 

  • [M] Mañe, R.: Ergodic Theory and Differentiable Dynamics. Berlin, Heidelberg, New York: Springer, 1987

    Google Scholar 

  • [N] Narnhofer, H.: Quantized Arnold cats can be entropicK-systems. J. Math. Phys.33, 1502–1510 (1992)

    Article  Google Scholar 

  • [PV] Percival, I., Vivaldi, F.: Arithmetical properties of strongly chaotic motions. Physica D25, 105–130 (1987)

    Google Scholar 

  • [PP] Parry, W., Pollicott, M.: Zea functions and the periodic orbit structure of hyperbolic dynamics, Astérisque187–188 (1990)

  • [RM] Ram Murthy, M.: Artin's conjecture for primitive roots. Mathematical Intelligencer10, 59–70 (1988)

    Google Scholar 

  • [S] Schnirelman, A.: Ergodic properties of the eigenfunctions. Usp. Math. Nauk29, 181–182 (1974)

    Google Scholar 

  • [Sa] Sarnak, P.: Arithmetic Quantum Chaos. Tel Aviv Lectures 1993 (to apper)

  • [Sc] Schmidt, W.: Equations over finite fields. An elementary approach. Vol.536, Lecture Notes in Mathematis, 1976

  • [VN] Von Neumann, J.: Beweis des Ergoidensatzes und desH-Theorems in der Neuen Mechanik. Zschr. f. Physik57, 30–70 (1929)

    Article  Google Scholar 

  • [Z] Zelditch, S.: Uniform distribution of eigenfunction on compact hyperbolic surfaces. Duke Math. J.55, 919–941 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Ya. G. Sinai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esposti, M.D., Graffi, S. & Isola, S. Classical limit of the quantized hyperbolic toral automorphisms. Commun.Math. Phys. 167, 471–507 (1995). https://doi.org/10.1007/BF02101532

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02101532

Keywords

Navigation