×

Bayesian inference using Hamiltonian Monte-Carlo algorithm for nonlinear joint modeling in the context of cancer immunotherapy. (English) Zbl 07924923


MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
Full Text: DOI

References:

[1] TsiatisAA, DavidianM. Joint modeling of longitudinal and time‐to‐event data: an overview. Stat Sin. 2004;14(3):809‐834. · Zbl 1073.62087
[2] WuL, LiuW, YiGY, HuangY. Analysis of longitudinal and survival data: joint modeling, inference methods, and issues. J Probab Stat. 2012;2012:640153 17pages. · Zbl 1233.62176
[3] WulfsohnMS, TsiatisAA. A joint model for survival and longitudinal data measured with error. Biometrics. 1997;53(1):330‐339. · Zbl 0874.62140
[4] SudellM, Kolamunnage‐DonaR, Tudur‐SmithC. Joint models for longitudinal and time‐to‐event data: a review of reporting quality with a view to meta‐analysis. BMC Med Res Methodol. 2016;16(1):168.
[5] RizopoulosD. Joint Models for Longitudinal and Time‐to‐Event Data: With Applications in R. Boca Raton, FL: Chapman & Hall/CRC Press; 2012. · Zbl 1284.62032
[6] RizopoulosD. JM: an R package for the joint modelling of longitudinal and time‐to‐event data. J Stat Softw (Online). 2010;35(9):1‐33.
[7] Proust‐LimaC, PhilippsV, LiquetB. Estimation of extended mixed models using latent classes and latent processes: the R package lcmm. J Stat Softw. 2017;78(2). http://dx.doi.org/10.18637/jss.v078.i02. · doi:10.18637/jss.v078.i02
[8] ZhangD, ChenMH, IbrahimJG, BoyeME, ShenW. JMFit: a SAS macro for joint models of longitudinal and survival data. J Stat Softw. 2016;71(3). http://dx.doi.org/10.18637/jss.v071.i03. · doi:10.18637/jss.v071.i03
[9] YinA, MoesDJA, Van HasseltJG, SwenJJ, GuchelaarH‐J. A review of mathematical models for tumor dynamics and treatment resistance evolution of solid tumors. CPT Pharmacometr Syst Pharmacol. 2019;8(10):720‐737.
[10] BrunoR, BottinoD, deAlwisDP, et al. Progress and opportunities to advance clinical cancer therapeutics using tumor dynamic models. Clin Cancer Res. 2020;26(8):1787‐1795. http://dx.doi.org/10.1158/1078‐0432.ccr‐19‐0287. · doi:10.1158/1078‐0432.ccr‐19‐0287
[11] DesméeS, MentréF, Veyrat‐FolletC, SébastienB, GuedjJ. Using the SAEM algorithm for mechanistic joint models characterizing the relationship between nonlinear PSA kinetics and survival in prostate cancer patients. Biometrics. 2016;73(1):305. · Zbl 1366.62212
[12] MbogningC, BleakleyK, LavielleM. Joint modelling of longitudinal and repeated time‐to‐event data using nonlinear mixed‐effects models and the stochastic approximation expectation-maximization algorithm. J Stat Comput Simul. 2015;85(8):1515‐1528. · Zbl 1457.62355
[13] TardivonC, DesméeS, KeriouiM, et al. Association between tumor size kinetics and survival in urothelial carcinoma patients treated with atezolizumab: implication for patient’s follow‐up. Clin Pharmacol Therapeut. 2019;106(4):810‐820.
[14] PowlesT, DuránI, van derHeijdenMS, et al. Atezolizumab versus chemotherapy in patients with platinum‐treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open‐label, phase 3 randomised controlled trial. Lancet. 2018;391(10122):748‐757.
[15] BellmuntJ, De WitR, VaughnDJ, et al. Pembrolizumab as second‐line therapy for advanced urothelial carcinoma. N Engl J Med. 2017;376(11):1015‐1026.
[16] HerbstRS, SoriaJC, KowanetzM, et al. Predictive correlates of response to the anti‐PD‐L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563.
[17] RizopoulosD. The R Package JMbayes for Fitting Joint Models for Longitudinal and Time‐to‐event Data Using MCMC. Journal of Statistical Software. 2016;72(7). http://dx.doi.org/10.18637/jss.v072.i07. · doi:10.18637/jss.v072.i07
[18] DesméeS, MentréF, Veyrat‐FolletC, GuedjJ. Nonlinear mixed‐effect models for prostate‐specific antigen kinetics and link with survival in the context of metastatic prostate cancer: a comparison by simulation of two‐stage and joint approaches. AAPS J. 2015;17(3):691‐699.
[19] ZhangH, HuangY. Quantile regression‐based Bayesian joint modeling analysis of longitudinal-survival data, with application to an AIDS cohort study. Lifetime Data Anal. 2019;28:1‐30.
[20] HoffmanMD, GelmanA. The No‐U‐turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo. J Mach Learn Res. 2014;15(1):1593‐1623. · Zbl 1319.60150
[21] NealRM. MCMC using Hamiltonian dynamics. Handbook Markov Chain Monte Carlo. 2011;2(11):2. · Zbl 1229.65018
[22] MonnahanCC, ThorsonJT, BranchTA. Faster estimation of Bayesian models in ecology using Hamiltonian Monte‐Carlo. Methods Ecol Evol. 2017;8(3):339‐348.
[23] GabryJ, GoodrichB. rstanarm: Bayesian Applied Regression Modeling Via Stan. R Package Version 2.1; 2016. http://mc‐stan.org/rstanarm/.
[24] WilkersonJ, AbdallahK, Hugh‐JonesC, et al. Estimation of tumour regression and growth rates during treatment in patients with advanced prostate cancer retrospective analysis. Lancet Oncol. 2017;18(1):143‐154.
[25] ChatterjeeMS, Elassaiss‐SchaapJ, LindauerA, et al. Population pharmacokinetic/pharmacodynamic modeling of tumor size dynamics in pembrolizumab‐treated advanced melanoma. CPT Pharmacometr Syst Pharmacol. 2017;6(1):29‐39.
[26] Jacqmin‐GaddaH, ThiébautR, ChêneG, CommengesD. Analysis of left‐censored longitudinal data with application to viral load in HIV infection. Biostatistics. 2000;1(4):355‐368. · Zbl 1096.62507
[27] CarpenterB, GelmanA, HoffmanMD, et al. Stan: A probabilistic programming language. J Stat Softw. 2017;76(1). http://dx.doi.org/10.18637/jss.v076.i01. · doi:10.18637/jss.v076.i01
[28] GelmanA. Prior distributions for variance parameters in hierarchical models. Bayesian Anal. 2006;1(3):515‐534. · Zbl 1331.62139
[29] VehtariA, GelmanA, SimpsonD, CarpenterB, BurknerP‐C. Rank‐normalization folding, and localization: an improved Rhat for assessing convergence of MCMC; 2019. arXiv preprint arXiv:1903.08008.
[30] VehtariA, LampinenJ. Bayesian model assessment and comparison using cross‐validation predictive densities. Neural Comput. 2002;14(10):2439‐2468. · Zbl 1002.62029
[31] PiironenJ, VehtariA. Comparison of Bayesian predictive methods for model selection. Stat Comput. 2017;27(3):711‐735. · Zbl 1505.62321
[32] ColbyE, BairE. Cross‐validation for nonlinear mixed effects models. J Pharmacokinet Pharmacodyn. 2013;40(2):243‐252.
[33] FribergM, JenningsR, AlsarrajM, et al. Indoleamine 2, 3‐dioxygenase contributes to tumor cell evasion of T cell‐mediated rejection. Int J Cancer. 2002;101(2):151‐155.
[34] BorcomanE, NandikollaA, LongG, GoelS, Le TourneauC. Patterns of response and progression to immunotherapy. Am Soc Clin Oncol Educ Book. 2018;38:169‐178.
[35] Saâda‐BouzidE, DefaucheuxC, KarabajakiaA, et al. Hyperprogression during anti‐PD‐1/PD‐L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann Oncol. 2017;28(7):1605‐1611.
[36] PapageorgiouG, MauffK, TomerA, RizopoulosD. An overview of joint modeling of time‐to‐event and longitudinal outcomes. Ann Rev Stat Appl. 2019;6:223‐240.
[37] DesméeS, MentréF, Veyrat‐FolletC, SébastienB, GuedjJ. Nonlinear joint models for individual dynamic prediction of risk of death using Hamiltonian Monte Carlo: application to metastatic prostate cancer. BMC Med Res Methodol. 2017;17(1):105.
[38] VehtariA, GelmanA, GabryJ. Practical Bayesian model evaluation using leave‐one‐out cross‐validation and WAIC. Stat Comput. 2017;27(5):1413‐1432. · Zbl 1505.62408
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.