×

Joint modelling of longitudinal and repeated time-to-event data using nonlinear mixed-effects models and the stochastic approximation expectation-maximization algorithm. (English) Zbl 1457.62355

Summary: We propose a nonlinear mixed-effects framework to jointly model longitudinal and repeated time-to-event data. A parametric nonlinear mixed-effects model is used for the longitudinal observations and a parametric mixed-effects hazard model for repeated event times. We show the importance for parameter estimation of properly calculating the conditional density of the observations (given the individual parameters) in the presence of interval and/or right censoring. Parameters are estimated by maximizing the exact joint likelihood with the stochastic approximation expectation-maximization algorithm. This workflow for joint models is now implemented in the Monolix software, and illustrated here on five simulated and two real datasets.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
62F10 Point estimation
62N02 Estimation in survival analysis and censored data
62-08 Computational methods for problems pertaining to statistics

Software:

invGauss; SemiPar; Monolix; R
Full Text: DOI

References:

[1] Self S, Pawitan Y. Modeling a marker of disease progression and onset of disease. In: Jewell NP, Dietz K, Farewell VT, editors. AIDS epidemiology: methodological issues. Boston, MA: Birkhaüser; 1992. p. 231-255. [Crossref], [Google Scholar]
[2] DeGruttola V, Tu X. Modeling progression of CD-4 lymphocyte count and its relationship to survival time. Biometrics. 1994;50:1003-1014. doi: 10.2307/2533439[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 0825.62792
[3] Faucett C, Thomas D. Simultaneously modelling censored survival data and repeatedly measured covariates: a Gibbs sampling approach. Stat Med. 1996;15:1663-1685. doi: 10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO;2-1[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[4] Wulfsohn M, Tsiatis A. A joint model for survival and longitudinal data measured with error. Biometrics. 1997;53:330-339. doi: 10.2307/2533118[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 0874.62140
[5] Rizopoulos D. Joint models for longitudinal and time-to-event data. With applications in R. Boca Raton, FL: Chapman and Hall/CRC Biostatistics; 2012. [Crossref], [Google Scholar] · Zbl 1284.62032
[6] Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics. 1982;38:963-974. doi: 10.2307/2529876[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 0512.62107
[7] Harville D. Maximum likelihood approaches to variance component estimation and to related problems. Biometrika. 1977;61:383-385. doi: 10.1093/biomet/61.2.383[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0373.62040
[8] Verbeke G, Molenberghs G. Linear mixed models for longitudinal data. New York: Springer-Verlag; 2000. [Google Scholar] · Zbl 0956.62055
[9] Ruppert D, Wand M, Carroll R. Semiparametric regression. Cambridge: Cambridge University Press; 2003. [Crossref], [Google Scholar] · Zbl 1038.62042
[10] Rizopoulos D, Verbeke G, Molenberghs G. Fully exponential laplace approximations for the joint modelling of survival and longitudinal data. J R Stat Soc B. 2009;71:637-654. doi: 10.1111/j.1467-9868.2008.00704.x[Crossref], [Google Scholar] · Zbl 1250.62049
[11] Brown E, Ibrahim J, DeGruttola V. A flexible B-spline model for multiple longitudinal biomarkers and survival. Biometrics. 2005;61:64-73. doi: 10.1111/j.0006-341X.2005.030929.x[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1077.62102
[12] Sheiner LB, Beal SL. Pharmacokinetic parameter estimates from several least squares procedures: superiority of extended least squares. J Pharmacokinet Biop. 1985;13:185-201. doi: 10.1007/BF01059398[Crossref], [PubMed], [Google Scholar]
[13] Lindstrom MJ, Bates DM. Nonlinear mixed-effects models for repeated measures. Biometrics. 1990;46:673-687. doi: 10.2307/2532087[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[14] Davidian M, Giltinan DM. Nonlinear models for repeated measurements data. London: Chapman and Hall; 1995. [Google Scholar]
[15] Vonesh EG, Chinchilli VM. Linear and nonlinear models for the analysis of repeated measurements. New York: Marcel Dekker; 1997. [Google Scholar] · Zbl 0893.62077
[16] Kuhn E, Lavielle M. Maximum likelihood estimation in nonlinear mixed effects models. Comput Stat Data Anal. 2005;49:1020-1038. doi: 10.1016/j.csda.2004.07.002[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1429.62279
[17] R Development Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2008, ISBN 3-900051-07-0. [Google Scholar]
[18] Liu L, Huang X, O’Quigley J. Analysis of longitudinal data in the presence of informative observational times and a dependent terminal event, with application to medical cost data. Biometrics. 2004;64(3):950-958. doi: 10.1111/j.1541-0420.2007.00954.x[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1145.62388
[19] Liu L, Huang X. Joint analysis of correlated repeated measures and recurrent events processes in the presence of a dependent terminal event. J R Stat Soc C - App. 2009;58:65-81. doi: 10.1111/j.1467-9876.2008.00641.x[Crossref], [Google Scholar]
[20] Tsiatis A, DeGruttola V, Wulfsohn M. Modeling the relationship of survival to longitudinal data measured with error: applications to survival and CD4 count in patients with AIDS. J Am Stat Assoc. 1995;90:27-37. doi: 10.1080/01621459.1995.10476485[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 0818.62102
[21] Dafni U, Tsiatsis A. Evaluating surrogate markers of clinical outcome measured with error. Biometrics. 1998;54:1445-1462. doi: 10.2307/2533670[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1058.62597
[22] Henderson R, Diggle P, Dobson A. Joint modelling of longitudinal measurements and event time data. Biostatistics. 2000;1:465-480. doi: 10.1093/biostatistics/1.4.465[Crossref], [PubMed], [Google Scholar] · Zbl 1089.62519
[23] Hsieh F, Tseng Y, Wang J. Joint modeling of survival and longitudinal data: likelihood approach revisited. Biometrics. 2006;62:1037-1043. doi: 10.1111/j.1541-0420.2006.00570.x[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1116.62105
[24] Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B. 1977;39:1-38. [Google Scholar] · Zbl 0364.62022
[25] Karlsson KE, Plan EL, Karlsson MOK. Performance of three estimation methods in repeated time-to-event modeling. AAPS J. 2011;13(1):83-91. doi: 10.1208/s12248-010-9248-3[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[26] Delyon B, Lavielle M, Moulines E. Convergence of a stochastic approximation version of the EM algorithm. Ann Stat. 1999;27:94-128. doi: 10.1214/aos/1018031103[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0932.62094
[27] Snoeck E, Chan P, Lavielle M, Jacqmin P, Jonsson N, Jorga K, Goggin T, Jumbe S, Frey N. Hepatitis C Viral dynamics explaining breakthrough, relapse or response after chronic treatment. Clin Pharmacol Ther. 2010;87(6):706-713. doi: 10.1038/clpt.2010.35[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[28] Samson A, Lavielle M, Mentré F. The SAEM algorithm for group comparison tests in longitudinal data analysis based on nonlinear mixed-effects model. Stat Med. 2007;26:4860-4875. doi: 10.1002/sim.2950[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[29] Chan P, Jacqmin P, Lavielle M, McFadyen L, Weatherley B. The Use of the SAEM Algorithm in MONOLIX software for estimation of population pharmacokinetic-pharmacodynamic-viral dynamics parameters of maraviroc in asymptomatic HIV subjects. J Pharmacokinetics Pharmacodynamics. 2011;38:41-61. doi: 10.1007/s10928-010-9175-z[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[30] Lavielle M, Samson A, Fermin AK, Mentré F. Maximum likelihood estimation of long term HIV dynamic models and antiviral response. Biometrics. 2011;67:250-259. doi: 10.1111/j.1541-0420.2010.01422.x[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 1217.62174
[31] Dubois A, Lavielle M, Gsteiger S, Pigeolet E, Mentré F. Model-based analyses of bioequivalence crossover trials using the SAEM algorithm. Stat Med. 2011;30:582-600. [Google Scholar]
[32] Aalen O, Borgan O, Gjessing H. Survival and event history analysis. New York: Springer; 2008. [Crossref], [Google Scholar] · Zbl 1204.62165
[33] Miller R, Frame B, Corrigan B, Burger P, Bockbrader H, Garofalo E, Lalonde R. Exposure response analysis of pregabalin add-on treatment of patients with refractory partial seizures. Clin Pharmacol Ther. 2003;73:491-505. doi: 10.1016/S0009-9236(03)00049-3[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[34] Delattre M, Savic R, Miller R, Karlsson M, Lavielle M. Analysis of exposure-response of CI-945 in patients with epilepsy: application of novel mixed hidden Markov modeling methodology. J Pharmacokinet Pharmacodyn. 2012;39:263-271. doi: 10.1007/s10928-012-9248-2[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.