×

A stabilization technique for coupled convection-diffusion-reaction equations. (English) Zbl 07865049

Summary: Partial differential equations having diffusive, convective, and reactive terms appear in the modeling of a large variety of processes in several branches of science. Often, several species or components interact with each other, rendering strongly coupled systems of convection-diffusion-reaction equations. Exact solutions are available in extremely few cases lacking practical interest due to the simplifications made to render such equations amenable by analytical tools. Then, numerical approximation remains the best strategy for solving these problems. The properties of these systems of equations, particularly the lack of sufficient physical diffusion, cause most traditional numerical methods to fail, with the appearance of violent and nonphysical oscillations, even for the single equation case. For systems of equations, the situation is even harder due to the lack of fundamental principles guiding numerical discretization. Therefore, strategies must be developed in order to obtain physically meaningful and numerically stable approximations. Such stabilization techniques have been extensively developed for the single equation case in contrast to the multiple equations case. This paper presents a perturbation-based stabilization technique for coupled systems of one-dimensional convection-diffusion-reaction equations. Its characteristics are discussed, providing evidence of its versatility and effectiveness through a thorough assessment.
{© 2018 John Wiley & Sons, Ltd.}

MSC:

76Mxx Basic methods in fluid mechanics
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
65Nxx Numerical methods for partial differential equations, boundary value problems
Full Text: DOI

References:

[1] CecchiMM, PirozziMA. High order finite difference numerical methods for time‐dependent convection‐dominated problems. Appl Numer Math. 2005;55(3):334‐356. https://doi.org/10.1016/j.apnum.2005.04.038 · Zbl 1083.65078 · doi:10.1016/j.apnum.2005.04.038
[2] FarrellPA, HegartyAF, MillerJJH, O’RiordanE, ShishkinGI. Robust Computational Techniques for Boundary Layers. Boca Raton, FL: Champan & Hall/CRC; 2000. · Zbl 0964.65083
[3] GraciaJL, LisbonaFJ. A uniformly convergent scheme for a system of reaction‐diffusion equations. J Comput Appl Math. 2007;206(1):1‐16. https://doi.org/10.1016/j.cam.2006.06.005 · Zbl 1119.65079 · doi:10.1016/j.cam.2006.06.005
[4] MatthewsS, O’RiordanE, ShishkinGI. A numerical method for a system of singularly perturbed reaction‐diffusion equations. J Comput Appl Math. 2001;145(1):151‐166. https://doi.org/10.1016/S0377-0427(01)00541-6 · Zbl 1004.65079 · doi:10.1016/S0377-0427(01)00541-6
[5] O’RiordanE, StynesM. Numerical analysis of a strongly coupled system of two singularly perturbed convection‐diffusion problems. Adv Comput Math. 2009;30(2):101‐121. https://doi.org/10.1007/s10444-007-9058-z · Zbl 1167.65044 · doi:10.1007/s10444-007-9058-z
[6] SealDC, TangQ, XuZ, ChristliebAJ. An explicit high‐order single‐stage single‐step positivity‐preserving finite difference WENO method for the compressible Euler equations. J Sci Comput. 2015;68(1):171‐190. https://doi.org/10.1007/s10915-015-0134-0 · Zbl 1383.76364 · doi:10.1007/s10915-015-0134-0
[7] SjögreenB. High order finite difference and finite volume methods for advection on the sphere. J Sci Comput. 2012;51(3):703‐732. https://doi.org/10.1007/s10915-011-9527-x · Zbl 1252.65145 · doi:10.1007/s10915-011-9527-x
[8] ToroEF. Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Berlin, Germany: Springer‐Verlag Berlin Heidelberg; 1999. https://doi.org/10.1007/b79761 · Zbl 1227.76006 · doi:10.1007/b79761
[9] BrooksAN, HughesTJR. Streamline upwind/Petrov‐Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier‐Stokes equations. Comput Methods Appl Mech Eng. 1982;32(1‐3):199‐259. https://doi.org/10.1016/0045-7825(82)90071-8 · Zbl 0497.76041 · doi:10.1016/0045-7825(82)90071-8
[10] ChengW, TemamR. Numerical approximation of one‐dimensional stationary diffusion equations with boundary layers. Comput Fluids. 2002;31(4‐7):453‐466. https://doi.org/10.1016/S0045-7930(01)00060-3 · Zbl 1004.76049 · doi:10.1016/S0045-7930(01)00060-3
[11] CodinaR. Comparison of some finite element methods for solving the diffusion‐convection‐reaction equation. Comput Methods Appl Mech Eng. 1998;156(1‐4):185‐210. https://doi.org/10.1016/S0045-7825(97)00206-5 · Zbl 0959.76040 · doi:10.1016/S0045-7825(97)00206-5
[12] JohnV, SchmeyerE. Finite element methods for time‐dependent convection‐diffusion‐reaction equations with small diffusion. Comput Methods Appl Mech Eng. 2008;198(3‐4):475‐494. https://doi.org/10.1016/j.cma.2008.08.016 · Zbl 1228.76088 · doi:10.1016/j.cma.2008.08.016
[13] OñateE, MiquelJ, HaukeG. Stabilized formulation for the advection‐diffusion‐absorption equation using finite calculus and linear finite elements. Comput Methods Appl Mech Eng. 2006;195(33‐36):3926‐3946. https://doi.org/10.1016/j.cma.2005.07.020 · Zbl 1178.76234 · doi:10.1016/j.cma.2005.07.020
[14] ParvaziniaM, NassehiV. Using bubble functions in the multi‐scale finite element modeling of the convection‐diffusion‐reaction equation. Int Commun Heat Mass Transf. 2010;37(2):125‐130. https://doi.org/10.1016/j.icheatmasstransfer.2009.09.007 · doi:10.1016/j.icheatmasstransfer.2009.09.007
[15] OñateE. Derivation of stabilized equations for numerical solution of advective‐diffusive transport and fluid flow problems. Comput Methods Appl Mech Eng. 1998;151(1‐2):233‐265. https://doi.org/10.1016/S0045-7825(97)00119-9 · Zbl 0916.76060 · doi:10.1016/S0045-7825(97)00119-9
[16] FelippaCA, OñateE. Nodally exact Ritz discretizations of 1D diffusion‐absorption and Helmholtz equations by variational FIC and modified equation methods. Comput Mech. 2007;39:91. https://doi.org/10.1007/s00466-005-0011-z · Zbl 1168.76336 · doi:10.1007/s00466-005-0011-z
[17] OñateE, MiquelJ, NadukandiP. An accurate FIC‐FEM formulation for the 1D advection‐diffusion‐reaction equation. Comput Methods Appl Mech Eng. 2016;298:373‐406. https://doi.org/10.1016/j.cma.2015.09.022 · Zbl 1423.76268 · doi:10.1016/j.cma.2015.09.022
[18] DoneaJ, HuertaA. Finite Element Methods for Flow Problems. Chichester, UK: John Wiley & Sons; 2003. https://doi.org/10.1002/0470013826 · doi:10.1002/0470013826
[19] ElmanHC, SilvesterDJ, WathenAJ. Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics. Oxford, UK: Oxford University Press; 2005. https://doi.org/10.1093/acprof:oso/9780199678792.001.0001 · Zbl 1304.76002 · doi:10.1093/acprof:oso/9780199678792.001.0001
[20] SmithGD. Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford, UK: Oxford University Press; 2004.
[21] ZienkiewiczOC, TaylorRL. The Finite Element Method. Volume 3: Fluid Dynamics. Oxford, UK: Butterworth‐Heinemann; 2000. · Zbl 0991.74003
[22] CanutoC, HussainiMY, QuarteroniA, ZangTA. Spectral Methods: Fundamentals in Single Domains. Scientific Computation. Berlin, Germany: Springer‐Verlag Berlin Heidelberg; 2006. https://doi.org/10.1007/978-3-540-30726-6 · Zbl 1093.76002 · doi:10.1007/978-3-540-30726-6
[23] FerzigerJH, PerićM. Computational Methods for Fluid Dynamics. Berlin, Germany: Springer‐Verlag Berlin Heidelberg; 1996. https://doi.org/10.1007/978-3-642-56026-2 · Zbl 0998.76001 · doi:10.1007/978-3-642-56026-2
[24] VersteegHK, MalalasekeraW. An Introduction to Computational Fluid Dynamics: The Finite Volume Method. London, UK: Prentice Hall; 1995.
[25] WesselingP. Principles of Computational Fluid Dynamics. Berlin, Germany: Springer‐Verlag Berlin Heidelberg; 2001. Springer Series in Computational Mathematics; Vol. 29.https://doi.org/10.1007/978-3-642-05146-3 · doi:10.1007/978-3-642-05146-3
[26] CowinSC. Bone poroelasticity. J Biomech. 1999;32(3):217‐238. https://doi.org/10.1016/S0021-9290(98)00161-4 · doi:10.1016/S0021-9290(98)00161-4
[27] BauseM, SchweglerK. Higher order finite element approximation of systems of convection‐diffusion‐reaction equations with small diffusion. J Comput Appl Math. 2013;246:52‐64. https://doi.org/10.1016/j.cam.2012.07.005 · Zbl 1262.65129 · doi:10.1016/j.cam.2012.07.005
[28] GribaudoM, GaetaR. Efficient steady‐state analysis of second‐order fluid stochastic Petri nets. Perform Eval. 2006;63(9‐10):1032‐1047. https://doi.org/10.1016/j.peva.2005.11.002 · doi:10.1016/j.peva.2005.11.002
[29] Kan‐OnY, MimuraM. Singular perturbation approach to a 3‐component reaction‐diffusion system arising in population dynamics. SIAM J Math Anal. 1998;29(6):1519‐1536. https://doi.org/10.1137/S0036141097318328 · Zbl 0920.35015 · doi:10.1137/S0036141097318328
[30] BhargavaSC. Generalized Lotka‐Volterra equations and the mechanism of technological substitution. Technol Forecast Soc Chang. 1989;35(4):319‐326. https://doi.org/10.1016/0040-1625(89)90068-1 · doi:10.1016/0040-1625(89)90068-1
[31] WuJ. Spatial structure: partial differential equations models. In: BrauerF (ed.), van denDriesscheP (ed.), WuJ (ed.), eds. Berlin, Germany: Springer‐Verlag Berlin Heidelberg; 2008:191‐203. Lecture Notes in Mathematics; Vol. 1945. https://doi.org/10.1007/978-3-540-78911-6_8 · Zbl 1206.92029 · doi:10.1007/978-3-540-78911-6_8
[32] CortésJC, JódarL, SalaR, Sevilla‐PerisP. Exact and numerical solution of Black-Scholes matrix equation. Appl Math Comput. 2005;160(3):607‐613. https://doi.org/10.1016/j.amc.2003.11.018 · Zbl 1089.91019 · doi:10.1016/j.amc.2003.11.018
[33] BauseM, SchweglerK. Analysis of stabilized higher‐order finite element approximation of nonstationary and nonlinear convection‐diffusion‐reaction equations. Comput Methods Appl Mech Eng. 2012;209‐212:184‐196. https://doi.org/10.1016/j.cma.2011.10.004 · Zbl 1243.65120 · doi:10.1016/j.cma.2011.10.004
[34] ShowalterRE, VisarragaDB. Double‐diffusion models from a highly‐heterogeneous medium. J Math Anal Appl. 2004;295(1):191‐210. https://doi.org/10.1016/j.jmaa.2004.03.031 · Zbl 1049.35033 · doi:10.1016/j.jmaa.2004.03.031
[35] AshwinP, CoombesS, NicksR. Mathematical frameworks for oscillatory network dynamics in neuroscience. J Math Neurosci. 2016;6:2. https://doi.org/10.1186/s13408-015-0033-6 · Zbl 1356.92015 · doi:10.1186/s13408-015-0033-6
[36] HodgkinAL, HuxleyAF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952;117(4):500‐544. https://doi.org/10.1113/jphysiol.1952.sp004764 · doi:10.1113/jphysiol.1952.sp004764
[37] ShowalterRE, WalkingtonNJ. Micro‐structure models of diffusion in fissured media. J Math Anal Appl. 1991;155(1):1‐20. https://doi.org/10.1016/0022-247X(91)90023-S · Zbl 0711.60078 · doi:10.1016/0022-247X(91)90023-S
[38] CodinaR. On stabilized finite element methods for linear systems of convection-diffusion‐reaction equations. Comput Methods Appl Mech Eng. 2000;188(1‐3):61‐82. https://doi.org/10.1016/S0045-7825(00)00177-8 · Zbl 0973.76041 · doi:10.1016/S0045-7825(00)00177-8
[39] CodinaR, SotoO. Finite element implementation of two‐equation and algebraic stress turbulence models for steady incompressible flows. Int J Numer Methods Fluids. 1999;30(3):309‐333. https://doi.org/10.1002/(SICI)1097-0363(19990615)30:3<309::AID-FLD844>3.0.CO;2-J · Zbl 0948.76036 · doi:10.1002/(SICI)1097-0363(19990615)30:3<309::AID-FLD844>3.0.CO;2-J
[40] ProtterMH, WeinbergerHF. Maximum Principles in Differential Equations. New York, NY: Springer‐Verlag New York; 1984. https://doi.org/10.1007/978-1-4612-5282-5 · Zbl 0549.35002 · doi:10.1007/978-1-4612-5282-5
[41] AbrahamsonLR, KellerHB, KreissHO. Difference approximations for singular perturbations of systems of ordinary differential equations. Numer Math. 1974;22(5):367‐391. https://doi.org/10.1007/BF01436920 · Zbl 0314.65042 · doi:10.1007/BF01436920
[42] RichtmyerRD, MortonKW. Difference Methods of Initial‐Value Problems. New York, NY: Interscience Publishers; 1967. · Zbl 0155.47502
[43] ShampineLF, ThompsonRJ. Difference methods for nonlinear first‐order hyperbolic systems of equations. Math Comput. 1970;24:45‐56. https://doi.org/10.1090/S0025-5718-1970-0263269-1 · Zbl 0196.17801 · doi:10.1090/S0025-5718-1970-0263269-1
[44] SpaldingDB. A novel finite difference formulation for differential expressions involving both first and second derivatives. Int J Numer Methods Eng. 1972;4(4):551‐559. https://doi.org/10.1002/nme.1620040409 · doi:10.1002/nme.1620040409
[45] WesselingP. On the construction of accurate difference schemes for hyperbolic partial differential equations. J Eng Math. 1973;7(1):19‐31. https://doi.org/10.1007/BF01535266 · Zbl 0252.65071 · doi:10.1007/BF01535266
[46] KelloggRB, MaddenN, StynesM. A parameter‐robust numerical method for a system of reaction‐diffusion equations in two dimensions. Numer Methods Partial Differ Equ. 2007;24(1):312‐334. https://doi.org/10.1002/num.20265 · Zbl 1133.65088 · doi:10.1002/num.20265
[47] ContrerasFRL, LyraPRM, SouzaMRA, CarvalhoDKE. A cell‐centered multipoint flux approximation method with a diamond stencil coupled with a higher order finite volume method for the simulation of oil‐water displacements in heterogeneous and anisotropic petroleum reservoirs. Comput Fluids. 2016;127:1‐16. https://doi.org/10.1016/j.compfluid.2015.11.013 · Zbl 1390.76416 · doi:10.1016/j.compfluid.2015.11.013
[48] OhlbergerM, RohdeC. Adaptive finite volume approximations for weakly coupled convection dominated parabolic systems. IMA J Numer Anal. 2002;22(2):253‐280. https://doi.org/10.1093/imanum/22.2.253 · Zbl 1007.65059 · doi:10.1093/imanum/22.2.253
[49] HughesTJR, MalletM. A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective‐diffusive systems. Comput Methods Appl Mech Eng. 1985;58(3):305‐328. https://doi.org/10.1016/0045-7825(86)90152-0 · Zbl 0622.76075 · doi:10.1016/0045-7825(86)90152-0
[50] HernándezH, MassartTJ, PeerlingsRHJ, GeersMGD. Towards an unconditionally stable numerical scheme for continuum dislocation transport. Model Simul Mater Sci Eng. 2015;23(8). https://doi.org/10.1088/0965-0393/23/8/085013 · doi:10.1088/0965-0393/23/8/085013
[51] IdelsohnS, NigroN, StortiM, BuscagliaG. A Petrov‐Galerkin formulation for advection‐reaction‐diffusion problems. Comput Methods Appl Mech Eng. 1996;136(1‐2):27‐46. https://doi.org/10.1016/0045-7825(96)01008-0 · Zbl 0896.76042 · doi:10.1016/0045-7825(96)01008-0
[52] CiarletPG, RaviartP‐A. Maximum principle and uniform convergence for the finite element method. Comput Meth Appl Mech Eng. 1973;2(1):17‐31. https://doi.org/10.1016/0045-7825(73)90019-4 · Zbl 0251.65069 · doi:10.1016/0045-7825(73)90019-4
[53] KelloggRB, LinssT, StynesM. A finite difference method on layer‐adapted meshes for an elliptic reaction‐diffusion system in two dimensions. Math Comput. 2008;77(264):2085‐2096. https://doi.org/10.1090/S0025-5718-08-02125-X · Zbl 1198.65209 · doi:10.1090/S0025-5718-08-02125-X
[54] van derVorstH. Bi‐CGSTAB: a fast and smoothly converging variant of Bi‐CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput. 1992;13(2):631‐644. https://doi.org/10.1137/0913035 · Zbl 0761.65023 · doi:10.1137/0913035
[55] O’RiordanE, StynesJ, StynesM. An iterative numerical algorithm for a strongly coupled system of singularly perturbed convection‐diffusion problems. In: MargenovS (ed.), VulkovLG (ed.), WaśniewskiJ (ed.), eds. Numerical Analysis and Its Applications. 4th International Conference, NAA 2008, Lozenetz, Bulgaria, June 16-20, 2008. Revised Selected Papers. Berlin, Germany: Springer‐Verlag Berlin Heidelberg; 2009:104‐115. Lecture Notes in Computer Science; Vol. 5434. https://doi.org/10.1007/978-3-642-00464-3_10 · Zbl 1233.65079 · doi:10.1007/978-3-642-00464-3_10
[56] MillerJJH, O’RiordanE, ShishkinGI. Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions. Singapore, Singapore: World Scientific; 1996. · Zbl 0915.65097
[57] QuarteroniA, SaccoR, SaleriF. Méthodes Numériques. Milan, Italy: Springer‐Verlag Italia; 2007. https://doi.org/10.1007/978-88-470-0496-2 · doi:10.1007/978-88-470-0496-2
[58] SaadY. Iterative Methods for Sparse Linear Systems. Philadelphia, PA: Society for Industrial and Applied Mathematics; 2003. https://doi.org/10.1137/1.9780898718003 · Zbl 1031.65046 · doi:10.1137/1.9780898718003
[59] van derVorstH. Iterative Krylov Methods for Large Linear Systems. Cambridge, UK: Cambridge University Press; 2003. https://doi.org/10.1017/CBO9780511615115 · Zbl 1023.65027 · doi:10.1017/CBO9780511615115
[60] ChenD, HongY, TrivediKS. Second‐order stochastic fluid models with fluid‐dependent flow rates. Perform Eval. 2002;49(1‐4):341‐358. https://doi.org/10.1016/S0166-5316(02)00113-X · Zbl 1043.68031 · doi:10.1016/S0166-5316(02)00113-X
[61] HughesTJR, FrancaLP, HulbertGM. A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least‐squares method for advective‐diffusive equations. Comput Methods Appl Mech Eng. 1989;73(2):173‐189. https://doi.org/10.1016/0045-7825(89)90111-4 · Zbl 0697.76100 · doi:10.1016/0045-7825(89)90111-4
[62] HughesTJR. Multiscale phenomena: Green’s functions, the Dirichlet‐to‐Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput Methods Appl Mech Eng. 1995;127(1‐4):387‐401. https://doi.org/10.1016/0377-0427(96)00025-8 · Zbl 0869.65061 · doi:10.1016/0377-0427(96)00025-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.