×

Finite element implementation of two-equation and algebraic stress turbulence models for steady incompressible flows. (English) Zbl 0948.76036

Summary: We describe a finite element formulation for solving the equations for \(k\) and \(\varepsilon\) of the classical \(k\)-\(\varepsilon\) turbulence model, or any other two-equation model. The finite element discretization is based on the SUPG method together with a discontinuity capturing technique to deal with sharp internal and boundary layers. The iterative strategy consists of several nested loops, the outermost being the linearization of the Navier-Stokes equations. The basic \(k\)-\(\varepsilon\) model is used for the implementation of an algebraic stress model that is able to account for the effect of rotation. Some numerical examples are presented to show the performance of the proposed scheme.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76F60 \(k\)-\(\varepsilon\) modeling in turbulence
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI

References:

[1] Turbulence, McGraw-Hill, New York, 1975.
[2] and , Analysis of the k-epsilon Turbulence Model, Wiley/Masson, New York, 1994.
[3] Turbulence Models and their Application in Hydraulics. A State of the Art Review, International Association for Hydraulic Research, Delft, 1980.
[4] Codina, Comput. Methods Appl. Mech. Eng. 110 pp 325– (1993) · Zbl 0844.76048 · doi:10.1016/0045-7825(93)90213-H
[5] ’A shock-capturing anisotropic diffusion for the finite element solution of the diffusion-convection-reaction equation’, in Proc. VIII Int. Conf. on Finite Elements in Fluids, Part I, Barcelona, Spain, September, 1993, IMNE/Pineridge Press, 1993, pp. 67-75. · Zbl 0875.76210
[6] Goldschmit, Eng. Comput. 14 pp 441– (1997) · Zbl 0983.76501 · doi:10.1108/02644409710178502
[7] Jaeger, Int. J. Numer. Methods Fluids 14 pp 1325– (1992) · Zbl 0753.76096 · doi:10.1002/fld.1650141105
[8] Autret, Int. J. Numer. Methods Fluids 7 pp 89– (1987) · Zbl 0613.76063 · doi:10.1002/fld.1650070202
[9] Benim, Comput. Methods Appl. Mech. Eng. 51 pp 507– (1985) · Zbl 0542.76072 · doi:10.1016/0045-7825(85)90045-3
[10] Smith, Int. J. Numer. Methods Fluids 4 pp 321– (1984) · Zbl 0546.76078 · doi:10.1002/fld.1650040403
[11] Utnes, Int. J. Numer. Methods Fluids 8 pp 965– (1988) · Zbl 0665.76050 · doi:10.1002/fld.1650080808
[12] Bakker, Trans IChemE 72 pp 583– (1994)
[13] Gatski, J. Fluid Mech. 254 pp 59– (1993) · Zbl 0781.76052 · doi:10.1017/S0022112093002034
[14] Speziale, Annu. Rev. Fluid Mech. 23 pp 107– (1991) · doi:10.1146/annurev.fl.23.010191.000543
[15] Cervera, Eng. Comput. 13 pp 4– (1996) · Zbl 0983.74576 · doi:10.1108/02644409610128382
[16] Turbulence Modeling for CFD, DCW Industries, La Canada, CA, 1993.
[17] Wilcox, AIAA J. 26 pp 1299– (1988) · Zbl 0664.76057 · doi:10.2514/3.10041
[18] Zeierman, AIAA J. 24 pp 1606– (1986) · doi:10.2514/3.9490
[19] Brooks, Comput. Methods Appl. Mech. Eng. 32 pp 199– (1982) · Zbl 0497.76041 · doi:10.1016/0045-7825(82)90071-8
[20] Codina, Comput. Methods Appl. Mech. Eng. 94 pp 239– (1992) · Zbl 0748.76082 · doi:10.1016/0045-7825(92)90149-E
[21] Galeão, Comput. Methods Appl. Mech. Eng. 68 pp 83– (1988) · Zbl 0626.76091 · doi:10.1016/0045-7825(88)90108-9
[22] Johnsom, Math. Comput. 49 pp 427– (1987) · doi:10.1090/S0025-5718-1987-0906180-5
[23] ’Finite element analysis of the compressible Euler and Navier-Stokes equations’, Ph.D. Thesis, Stanford University, 1988.
[24] and , Mixed and Hybrid Finite Element Methods, Springer, Berlin, 1991. · Zbl 0788.73002 · doi:10.1007/978-1-4612-3172-1
[25] Codina, Comput. Methods Appl. Mech. Eng. 110 pp 237– (1993) · Zbl 0844.76049 · doi:10.1016/0045-7825(93)90163-R
[26] Kim, J. Fluid Eng. ASME Trans. 102 pp 302– (1980) · doi:10.1115/1.3240686
[27] ERCOFTACDatabase. http://fluindigo.mech.surrey.ac.uk/, University of Surrey, UK, 1996.
[28] Fleming, Exp. Fluids 14 pp 336– (1993) · doi:10.1007/BF00189496
[29] Bonin, ERCOFTAC Bull. 28 pp 48– (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.