×

Recent experiences with error estimation and adaptivity. II: Error estimation for \(h\)-adaptive approximations on grids of triangles and quadrilaterals. (English) Zbl 0782.65127

In part I [ibid. 97, No. 3, 399-436 (1992; Zbl 0764.65064)] residual and flux projection error estimators were presented for the finite element approximations of the solution of the Poisson equation.
In the present part further numerical experiments are presented including error estimators for the vector-valued problem of plane elastostatics. A detailed numerical study of several flux-projectors for \(h\)-adaptive grids of bilinear and biquadratic quadrilaterals is conducted. A flux equilibration iteration, which may be employed in some cases to improve flux projection estimates is also included. For the case of grids of quadrilaterals, several versions of the boundary integral term in the definition of the local problems are compared. The numerical experiments confirm the good overall performance of residual estimates, and indicate that flux projection estimates in some interesting situation may be divergent.

MSC:

65N15 Error bounds for boundary value problems involving PDEs
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation

Citations:

Zbl 0764.65064
Full Text: DOI

References:

[1] Strouboulis, T.; Haque, K. A., Recent experiences with error estimation and adaptivity, Part I: Review of error estimators for scalar elliptic problems, Comput. Methods Appl. Mech. Engrg., 97, 399-436 (1992) · Zbl 0764.65064
[2] Babuška, I.; Miller, A., A feedback finite element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator, Comput. Methods Appl. Mech. Engrg., 61, 1-40 (1987) · Zbl 0593.65064
[3] Babuška, I.; Yu, D., Asymptotically exact a posteriori error estimator for biquadratic elements, Finite Elements Anal. Des., 3, 341-354 (1987) · Zbl 0619.73080
[4] Oden, J. T.; Demkowicz, L.; Rachowicz, W.; Westermann, T. A., Toward a universal \(h-p\) adaptive finite element strategy, Part 2. A posteriori error estimates, Comput. Methods Appl. Mech. Engrg., 77, 113-180 (1989) · Zbl 0723.73075
[5] Rachowicz, W., An \(h-p\) finite element method for one-irregular meshes, error estimation and mesh refinement strategy, (Ph.D. Dissertation (1989), The University of Texas at Austin) · Zbl 0842.65078
[6] Westermann, T. A., A posteriori estimation of errors in \(hp\) finite element methods for linear elliptic boundary value problems, (M.Sc. Thesis (1989), The University of Texas at Austin)
[7] Zienkiewicz, O. C.; Zhu, J. Z., A simple error estimator and adaptive procedure for practical engineering analysis, Internat. J. Numer. Methods Engrg., 24, 337-357 (1987) · Zbl 0602.73063
[8] Oden, J. T.; Brauchli, H., On the calculation of consistent stress distributions in finite element approximations, Internat. J. Numer. Methods Engrg., 3, 317-325 (1971) · Zbl 0251.73056
[9] Ainsworth, M.; Zhu, J. Z.; Craig, A. W.; Zienkiewicz, O. C., Analysis of the Zienkiewicz-Zhu a-posteriori error estimator in the finite element method, Internat. J. Numer. Methods Engrg., 28, 2161-2174 (1989) · Zbl 0716.73082
[10] Shephard, M. S.; Niu, Q.; Baehmann, P. L., Some results using stress projectors for error indication and estimation, (Flaherty, J. E.; Paslow, P. J.; Shephard, M. S.; Vasilakis, J. D., Adaptive Methods for Partial Differential Equations (1989), SIAM: SIAM Philadelphia, PA), 83-99 · Zbl 0693.73049
[11] Zhu, J. Z.; Zienkiewicz, O. C., Superconvergence recovery technique and a posteriori error estimators, Internat. J. Numer. Methods Engrg., 30, 1321-1339 (1990) · Zbl 0716.73083
[12] M. Ainsworth and J.T. Oden, A unified approach to a posteriori error estimation using element residual methods, Numer. Math., in press.; M. Ainsworth and J.T. Oden, A unified approach to a posteriori error estimation using element residual methods, Numer. Math., in press. · Zbl 0797.65080
[13] Ciarlet, P. G., The Finite Element Method for Elliptic Problems (1978), North-Holland: North-Holland New York · Zbl 0445.73043
[14] Oden, J. T.; Carey, G. F., (Finite Elements: Mathematical Aspects, Vol. IV (1981), Prentice Hall: Prentice Hall Englewood Cliffs, NJ) · Zbl 0459.65070
[15] Becker, E. B.; Carey, G. F.; Oden, J. T., (Finite Elements, An Introduction, Vol. I (1981), Prentice Hall: Prentice Hall Englewood Cliffs, NJ) · Zbl 0459.65070
[16] Hughes, T. J.R., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (1987), Prentice Hall: Prentice Hall Englewood Cliffs, NJ · Zbl 0634.73056
[17] Bank, R. E.; Sherman, A. H.; Weiser, A., Refinement algorithms and data structures for regular local mesh refinement, (Stepleman, R.; etal., Scientific Computing (1983), IMACS/North-Holland: IMACS/North-Holland Amsterdam), 3-17
[18] Demkowicz, L.; Oden, J. T.; Rachowicz, W.; Hardy, O., Toward a universal \(h-p\) adaptive finite element strategy, Part 1. Constrained approximation and data structure, Comput. Methods Appl. Mech. Engrg., 77, 79-112 (1989) · Zbl 0723.73074
[19] Devloo, Ph. R., An \(h-p\) adaptive finite element method for steady compressible flow, (Ph.D. Dissertation (1987), The University of Texas at Austin)
[20] Lo, S. H., A new mesh regeneration scheme for arbitrary planar domains, Internat. J. Numer. Methods Engrg., 21, 1403-1426 (1985) · Zbl 0587.65081
[21] Peraire, J.; Vahdati, M.; Morgan, K.; Zienkiewicz, O. C., Adaptive remeshing for compressible flow computations, J. Comp. Phys., 72, 449-466 (1987) · Zbl 0631.76085
[22] Hansbo, P., Adaptivity and streamline diffusion procedures in the finite element method, (Publication 89:2 (1989), Department of Structural Mechanics, Chalmers University of Technology: Department of Structural Mechanics, Chalmers University of Technology Göteborg, Sweden) · Zbl 0874.76036
[23] Jin, H.; Wiberg, N.-E., Two-dimensional mesh generation, adaptive remeshing and refinement, Internat. J. Numer. Methods. Engrg., 29, 1501-1526 (1990)
[24] Lo, S. H., Automatic mesh generation and adaptation using contours, Internat. J. Numer. Methods Engrg., 31, 689-707 (1991) · Zbl 0825.73799
[25] Lohner, R., Some useful data structures for the generation of unstructured grids, Comm. Appl. Numer. Methods, 4, 123-135 (1988) · Zbl 0643.65075
[26] Babuška, I.; Rheinboldt, W. C., Analysis of optimal finite-element meshes in \(R^1\), Math. Comp., 33, 435-463 (1979) · Zbl 0431.65055
[27] Diaz, A. R.; Kikuchi, N.; Taylor, J. E., A method of grid optimization for finite element methods, Comput. Methods Appl. Mech. Engrg., 41, 29-45 (1983) · Zbl 0509.73071
[28] Demkowicz, L.; Devloo, P.; Oden, J. T., On an \(h- type\) mesh-refinement strategy based on minimization of interpolation errors, Comput. Methods Appl. Mech. Engrg., 53, 67-89 (1985) · Zbl 0556.73081
[29] Babuška, I.; Gui, W., Basic principles of feedback and adaptive approaches in the finite element method, Comput. Methods Appl. Mech. Engrg., 55, 27-42 (1986) · Zbl 0572.65095
[30] Eriksson, K.; Johnson, C., An adaptive finite element method for linear elliptic problems, Math. Comp., 50, 361-383 (1988) · Zbl 0644.65080
[31] Zienkiewicz, O. C.; Zhu, J. Z.; Gong, N. G., Effective and practical \(h-p\) version adaptive analysis procedures for the finite element method, Internat. J. Numer. Methods. Engrg., 28, 879-891 (1989)
[32] Hinton, E.; Campbell, J. S., Local and global smoothing of discontinuous finite element functions using a least-squares method, Internat. J. Numer. Methods Engrg., 8, 461-480 (1974) · Zbl 0286.73066
[33] Hinton, E.; Scott, F. C.; Ricketts, R. E., Local least squares stress smoothing for parabolic isoparametric elements, Internat. J. Numer. Methods Engrg., 9, 235-256 (1975)
[34] M. Ainsworth and J.T. Oden, private communication.; M. Ainsworth and J.T. Oden, private communication.
[35] Loubignac, G.; Cantin, G.; Touzot, G., Continuous stress fields in finite element analysis, AIAA J., 15, 1645-1647 (1977)
[36] Cantin, G.; Loubignac, G.; Touzot, G., An iterative algorithm to build continuous stress and displacement solutions, Internat. J. Numer. Methods Engrg., 12, 1493-1506 (1978) · Zbl 0434.73087
[37] Zienkiewicz, O. C.; Xi-Kui, L.; Nakazawa, S., Iterative solution of mixed problems and the stress recovery procedures, Comm. Appl. Numer. Methods, 1, 3-9 (1985) · Zbl 0586.73127
[38] Zienkiewicz, O. C.; Vilotte, J. P.; Toyoshima, S.; Nakazawa, S., Iterative method for constrained and mixed approximation. An inexpensive improvement of F.E.M. performance, Comput. Methods Appl. Mech. Engrg., 51, 3-29 (1985) · Zbl 0538.73099
[39] Zienkiewicz, O. C.; Craig, A. W.; Zhu, J. Z.; Gallagher, R. H., Adaptive analysis refinement and shape optimization—Some new possibilities, (Bennett, J. A.; Botkin, M. E., The Optimum Shape. The Optimum Shape, Automated Structural Design (1986), Plenum Press: Plenum Press New York), 3-27
[40] Babuška, I.; Rodriguez, R., The problem of the selection of an a posteriori error indicator based on smoothening techniques, (Technical Note BN-1126 (1991), Institute for Physical Science and Technology, The University of Maryland) · Zbl 0770.65065
[41] I. Babuška and D. Yu, A feedback finite element method of \(bi\); I. Babuška and D. Yu, A feedback finite element method of \(bi\)
[42] Zienkiewicz, O. C.; Zhu, J. Z., The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique, Internat. J. Numer. Methods Engrg., 33, 1331-1364 (1992) · Zbl 0769.73084
[43] Zienkiewicz, O. C.; Zhu, J. Z., The superconvergent patch recovery and a posteriori error estimates, Part 2: Error estimates and adaptivity, Internat. J. Numer. Methods Engrg., 33, 1365-1382 (1992) · Zbl 0769.73085
[44] Ladeveze, P.; Leguillon, D., Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal., 20, 3, 485-509 (1983) · Zbl 0582.65078
[45] Hugger, J., computational aspects and adaptive solution methods in the finite element method for non-linear parametrized problems, (Ph.D. Dissertation (August 1990), University of Maryland at College Park)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.