×

Tropical Monte Carlo quadrature for Feynman integrals. (English) Zbl 07755203

Summary: We introduce a new method to evaluate algebraic integrals over the simplex numerically. This new approach employs techniques from tropical geometry and exceeds the capabilities of existing numerical methods by an order of magnitude. The method can be improved further by exploiting the geometric structure of the underlying integrand. As an illustration of this, we give a specialized integration algorithm for a class of integrands that exhibit the form of a generalized permutahedron. This class includes integrands for scattering amplitudes and parametric Feynman integrals with tame kinematics. A proof-of-concept implementation is provided with which Feynman integrals up to loop order 17 can be evaluated.

MSC:

65D30 Numerical integration
81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
52B55 Computational aspects related to convexity
14E15 Global theory and resolution of singularities (algebro-geometric aspects)
14T90 Applications of tropical geometry

References:

[1] M. Aguiar and F. Ardila, Hopf monoids and generalized permutahedra. 2017, arXiv:1709.07504
[2] N. Arkani-Hamed, Y. Bai, S. He, and G. Yan, Scattering forms and the positive geometry of kinematics, color and the worldsheet. J. High Energy Phys. 2018 (2018), no. 5, paper no. 096 Zbl 1391.81200 MR 3832668 · Zbl 1391.81200
[3] N. Arkani-Hamed, Y. Bai, and T. Lam, Positive geometries and canonical forms. J. High Energy Phys. 2017 (2017), no. 11, paper no. 039 Zbl 1383.81273 MR 3747267 · Zbl 1383.81273
[4] N. Arkani-Hamed, J. Bourjaily, F. Cachazo, S. Caron-Huot, and J. Trnka, The all-loop integrand for scattering amplitudes in planar N D 4 SYM. J. High Energy Phys. 2011 (2011), no. 1, paper no. 041 Zbl 1214.81141 MR 2792292 · Zbl 1214.81141
[5] N. Arkani-Hamed, S. He, and T. Lam, Stringy canonical forms. J. High Energy Phys. 2021 (2021), no. 2, paper no. 069 Zbl 1460.83083 MR 4260349 · Zbl 1460.83083
[6] I. Bárány and Z. Füredi, Computing the volume is difficult. Discrete Comput. Geom. 2 (1987), no. 4, 319-326 Zbl 0628.68041 MR 911186 · Zbl 0628.68041
[7] C. M. Bender and T. T. Wu, Anharmonic oscillator. Phys. Rev. 184 (1969), 1231-1260 MR 260323
[8] M. Berghoff, Feynman amplitudes on moduli spaces of graphs. Ann. Inst. Henri Poincaré D 7 (2020), no. 2, 203-232 Zbl 1444.81031 MR 4109833 · Zbl 1444.81031
[9] M. Berghoff and D. Kreimer, Graph complexes and Feynman rules. 2020, arXiv:2008.09540 · Zbl 1511.18017
[10] C. Berkesch, J. Forsgård, and M. Passare, Euler-Mellin integrals and A-hypergeometric functions. Michigan Math. J. 63 (2014), no. 1, 101-123 Zbl 1290.32008 MR 3189470 · Zbl 1290.32008
[11] Z. Bern, L. Dixon, D. Dunbar, and D. Kosower, One loop n point gauge theory ampli-tudes, unitarity and collinear limits. Nuclear Phys. B 425 (1994), 217-260 Zbl 1049.81644 MR 1292626 · Zbl 1049.81644
[12] T. Binoth and G. Heinrich, An automatized algorithm to compute infrared divergent mul-tiloop integrals. Nuclear Phys. B 585 (2000), 741-759 Zbl 1042.81565 MR 1784111 · Zbl 1042.81565
[13] S. Bloch, H. Esnault, and D. Kreimer, On motives associated to graph polynomials. Comm. Math. Phys. 267 (2006), 181-225 Zbl 1109.81059 MR 2238909 · Zbl 1109.81059
[14] S. Bloch and D. Kreimer, Cutkosky rules and Outer space. 2015, arXiv:1512.01705
[15] C. Bogner and S. Weinzierl, Resolution of singularities for multi-loop integrals. Comput. Phys. Comm. 178 (2008), no. 8, 596-610 Zbl 1196.81010 MR 2672132 · Zbl 1196.81010
[16] C. Bogner and S. Weinzierl, Feynman graph polynomials. Internat. J. Modern Phys. A 25 (2010), no. 13, 2585-2618 Zbl 1193.81072 MR 2651267 · Zbl 1193.81072
[17] M. Borinsky, Feynman graph generation and calculations in the Hopf algebra of Feynman graphs. Comput. Phys. Commun. 185 (2014), no. 12, 3317-3330 Zbl 1360.81012 · Zbl 1360.81012
[18] M. Borinsky, Renormalized asymptotic enumeration of Feynman diagrams. Ann. Physics 385 (2017), 95-135 Zbl 1372.81124 MR 3707607 · Zbl 1372.81124
[19] M. Borinsky, Graphs in perturbation theory. Algebraic structure and asymptotics. Springer Theses, Springer, Cham, 2018 Zbl 1444.81002 MR 3839650 · Zbl 1444.81002
[20] M. Borinsky and K. Vogtmann, The Euler characteristic of Out.F n /. Comment. Math. Helv. 95 (2020), no. 4, 703-748 Zbl 07310899 MR 4184576 · Zbl 1530.20099
[21] S. Borowka, T. Gehrmann, and D. Hulme, Systematic approximation of multi-scale Feyn-man integrals. J. High Energy Phys. 2018 (2018), no. 8, paper no. 111 Zbl 1396.81095 · Zbl 1396.81095
[22] S. Borowka, G. Heinrich, S. Jahn, S. Jones, M. Kerner, and J. Schlenk, pySecDec: a tool-box for the numerical evaluation of multi-scale integrals. Comput. Phys. Commun. 222 (2018), 313-326 · Zbl 07693053
[23] S. Borowka, G. Heinrich, S. Jahn, S. Jones, M. Kerner, and J. Schlenk, A GPU compat-ible quasi-Monte Carlo integrator interfaced to pySecDec. Comput. Phys. Commun. 240 (2019), 120-137 Zbl 07310899 · Zbl 07674767
[24] S. Borowka, G. Heinrich, S. Jones, T. Zirke, M. Kerner, and J. Schlenk, SecDec-3.0: numerical evaluation of multi-scale integrals beyond one loop. Comput. Phys. Commun. 196 (2015), 470-491 Zbl 1360.81013 · Zbl 1360.81013
[25] D. J. Broadhurst and D. Kreimer, Knots and numbers in 4 theory to 7 loops and beyond. Internat. J. Modern Phys. C 6 (1995), no. 4, 519-524 Zbl 0940.81520 MR 1352337 · Zbl 0940.81520
[26] J. Broedel, C. Duhr, F. Dulat, B. Penante, and L. Tancredi, Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series. J. High Energy Phys. 2018 (2018), no. 8, paper no. 014 MR 3866375
[27] F. Brown, The massless higher-loop two-point function. Comm. Math. Phys. 287 (2009), no. 3, 925-958 Zbl 1196.81130 MR 2486668 · Zbl 1196.81130
[28] F. Brown, On the periods of some Feynman integrals. 2009, arXiv:0910.0114
[29] F. Brown, Feynman amplitudes, coaction principle, and cosmic Galois group. Commun. Number Theory Phys. 11 (2017), no. 3, 453-556 Zbl 1395.81117 MR 3713351 · Zbl 1395.81117
[30] F. Brown and D. Kreimer, Angles, scales and parametric renormalization. Lett. Math. Phys. 103 (2013), no. 9, 933-1007 Zbl 1273.81164 MR 3077961 · Zbl 1273.81164
[31] F. Brown and O. Schnetz, A K3 in 4 . Duke Math. J. 161 (2012), no. 10, 1817-1862 Zbl 1253.14024 MR 2954618 · Zbl 1253.14024
[32] F. Brown and O. Schnetz, Single-valued multiple polylogarithms and a proof of the zig-zag conjecture. J. Number Theory 148 (2015), 478-506 Zbl 1395.11115 MR 3283191 · Zbl 1395.11115
[33] F. Brown and K. Yeats, Spanning forest polynomials and the transcendental weight of Feynman graphs. Comm. Math. Phys. 301 (2011), no. 2, 357-382 Zbl 1223.05019 MR 2764991 · Zbl 1223.05019
[34] W. Bruns and B. Ichim, Normaliz: algorithms for affine monoids and rational cones. J. Algebra 324 (2010), no. 5, 1098-1113 Zbl 1203.13033 MR 2659215 · Zbl 1203.13033
[35] F. Cachazo, N. Early, A. Guevara, and S. Mizera, Scattering equations: from projective spaces to tropical Grassmannians. J. High Energy Phys. 2019 (2019), no. 6, paper no. 039 Zbl 1445.81064 MR 3982543 · Zbl 1445.81064
[36] Z. Capatti, V. Hirschi, D. Kermanschah, and B. Ruijl, Loop-tree duality for multiloop numerical integration. Phys. Rev. Lett. 123 (2019), paper no. 151602
[37] S. Catani, T. Gleisberg, F. Krauss, G. Rodrigo, and J.-C. Winter, From loops to trees by-passing Feynman’s theorem. J. High Energy Phys. 2008 (2008), no. 9, paper no. 065 Zbl 1245.81117 MR 2447725 · Zbl 1245.81117
[38] M. Chan, M. Melo, and F. Viviani, Tropical Teichmüller and Siegel spaces. In Algebraic and combinatorial aspects of tropical geometry, pp. 45-85, Contemp. Math. 589, Amer. Math. Soc., Providence, RI, 2013 Zbl 1290.14037 MR 3088910 · Zbl 1290.14037
[39] J. C. Collins, Renormalization. Cambridge Monogr. Math. Phys 1984, Cambridge Uni-versity Press, Cambridge, 1984 Zbl 1094.53505 MR 778558
[40] A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem. 1: The Hopf algebra structure of graphs and the main theorem. Comm. Math. Phys. 210 (2000), 249-273 Zbl 1032.81026 MR 1748177 · Zbl 1032.81026
[41] J. Courtiel and K. Yeats, Next-to k leading log expansions by chord diagrams. Comm. Math. Phys. 377 (2020), 469-501 Zbl 1447.81169 MR 4107935 · Zbl 1447.81169
[42] M. Culler and K. Vogtmann, Moduli of graphs and automorphisms of free groups. Invent. Math. 84 (1986), no. 1, 91-119 Zbl 0589.20022 MR 830040 · Zbl 0589.20022
[43] C. de Calan and V. Rivasseau, Local existence of the Borel transform in Euclideanˆ4 4 . Comm. Math. Phys. 82 (1981), no. 1, 69-100 MR 638514
[44] L. de la Cruz, Feynman integrals as A-hypergeometric functions. J. High Energy Phys. 2019 (2019), no. 12, paper no. 123 Zbl 1431.81061 MR 4061234 · Zbl 1431.81061
[45] E. Delabaere and F. Pham, Resurgent methods in semi-classical asymptotics. Ann. Inst. H. Poincaré Phys. Théor. 71 (1999), no. 1, 1-94 Zbl 0977.34053 MR 1704654 · Zbl 0977.34053
[46] J. S. Doker, Geometry of generalized permutohedra. Ph.D. thesis, University of Califor-nia, Berkeley, 2011 MR 3022511
[47] J. M. Drummond, J. M. Henn, and J. Trnka, New differential equations for on-shell loop integrals. J. High Energy Phys. 2011 (2011), no. 4, paper no. 083 Zbl 1250.81064 MR 2833234 · Zbl 1250.81064
[48] M. Dyer, A. Frieze, and R. Kannan, A random polynomial-time algorithm for approx-imating the volume of convex bodies. J. Assoc. Comput. Mach. 38 (1991), no. 1, 1-17 Zbl 0799.68107 MR 1095916 · Zbl 0799.68107
[49] R. J. Eden, P. V. Landshoff, D. I. Olive, and J. C. Polkinghorne, The analytic S-matrix. Cambridge University Press, London, 1966 Zbl 0139.46204 MR 0204051 · Zbl 0139.46204
[50] T.-F. Feng, C.-H. Chang, J.-B. Chen, and H.-B. Zhang, GKZ-hypergeometric systems for Feynman integrals. Nuclear Phys. B 953 (2020), paper no. 114952 Zbl 1473.81066 MR 4065464 · Zbl 1473.81066
[51] S. Fujishige and N. Tomizawa, A note on submodular functions on distributive lattices. J. Oper. Res. Soc. Japan 26 (1983), no. 4, 309-318 Zbl 0532.06008 MR 729424 · Zbl 0532.06008
[52] A. Gehrmann-De Ridder, T. Gehrmann, and G. Heinrich, Four particle phase space inte-grals in massless QCD. Nuclear Phys. B 682 (2004), no. 1-2, 265-288 Zbl 1045.81558 · Zbl 1045.81558
[53] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Generalized Euler integrals and A-hypergeometric functions. Adv. Math. 84 (1990), no. 2, 255-271 Zbl 0741.33011 MR 1080980 · Zbl 0741.33011
[54] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants. Math. Theory Appl., Birkhäuser Boston, Inc., Boston, MA, 1994 Zbl 0827.14036 MR 1264417 · Zbl 0827.14036
[55] M. B. Green, J. H. Schwarz, and E. Witten, Superstring theory. Vol. 1: Introduction. Cambridge Monogr. Math. Phys., Cambridge University Press, Cambridge, 1988
[56] T. Hahn, CUBA -a library for multidimensional numerical integration. Comput. Phys. Commun. 168 (2005), no. 2, 78-95 Zbl 1196.65052 MR 2136794 · Zbl 1196.65052
[57] J. M. Hammersley and D. C. Handscomb, Monte Carlo methods. Springer, Dordrecht, 1964 Zbl 0121.35503 MR 0223065 · Zbl 0121.35503
[58] S. He, Z. Li, P. Raman, and C. Zhang, Stringy canonical forms and binary geometries from associahedra, cyclohedra and generalized permutohedra. J. High Energy Phys. 2020 (2020), no. 10, paper no. 054 Zbl 1456.83101 MR 4204051 · Zbl 1456.83101
[59] G. Heinrich, Sector decomposition. Internat. J. Modern Phys. A 23 (2008), no. 10, 1457-1486 Zbl 1153.81522 MR 2401448 · Zbl 1153.81522
[60] G. Heinrich, Collider physics at the precision frontier. Phys. Rep. 922 (2021), 1-69 Zbl 07405116 MR 4271901 · Zbl 1509.81614
[61] M. Henk, J. Richter-Gebert, and G. M. Ziegler, Basic properties of convex polytopes. In Handbook of discrete and computational geometry, pp. 243-270, CRC Press Ser. Dis-crete Math. Appl., CRC, Boca Raton, FL, 1997 Zbl 0911.52007 MR 1730169
[62] J. M. Henn, Multiloop integrals in dimensional regularization made simple. Phys. Rev. Lett. 110 (2013), no. 25, paper no. 251601
[63] J. M. Henn, Lectures on differential equations for Feynman integrals. J. Phys. A 48 (2015), no. 15, paper no. 153001 Zbl 1312.81078 MR 3335706 · Zbl 1312.81078
[64] K. Hepp, Proof of the Bogolyubov-Parasiuk theorem on renormalization. Comm. Math. Phys. 2 (1966), no. 4, 301-326 Zbl 1222.81219 · Zbl 1222.81219
[65] F. Herzog, Geometric IR subtraction for final state real radiation. J. High Energy Phys. 2018 (2018), no. 8, paper no. 006 MR 3867258
[66] S. Hu, O. Schnetz, J. Shaw, and K. Yeats, Further investigations into the graph theory of 4 -periods and the c 2 invariant. 2018, arXiv:1812.08751
[67] P. Johansson, The argument cycle and the coamoeba. Complex Var. Elliptic Equ. 58 (2013), no. 3, 373-384 Zbl 1263.14051 MR 3011931 · Zbl 1263.14051
[68] T. Kaneko and T. Ueda, A geometric method of sector decomposition. Comput. Phys. Commun. 181 (2010), no. 8, 1352-1361 Zbl 1219.65014 · Zbl 1219.65014
[69] R. P. Klausen, Hypergeometric series representations of Feynman integrals by GKZ hypergeometric systems. J. High Energy Phys. 2020 (2020), no. 4, paper no. 121 Zbl 1436.81049 MR 4096928 · Zbl 1436.81049
[70] D. E. Knuth, The art of computer programming. Vol. 2. Seminumerical algorithms. Addison-Wesley, Reading, MA, 1998 Zbl 0895.65001 MR 3077153 · Zbl 0895.65001
[71] M. V. Kompaniets and E. Panzer, Minimally subtracted six-loop renormalization of O.n/-symmetric 4 theory and critical exponents. Phys. Rev. D 96 (2017), no. 3, paper no. 036016 MR 3848159
[72] A. V. Kotikov, Differential equations method. New technique for massive Feynman dia-gram calculation. Phys. Lett. B 254 (1991), no. 1-2, 158-164 MR 1092911 · Zbl 1020.81734
[73] D. Kreimer, Multi-valued Feynman graphs and scattering theory. In Elliptic integrals, elliptic functions and modular forms in quantum field theory, pp. 295-325, Texts Monogr. Symbol. Comput., Springer, Cham, 2019 MR 3889562
[74] D. Kreimer and K. Yeats, An étude in non-linear Dyson-Schwinger equations. Nuclear Phys. B Proc. Suppl. 160 (2006), 116-121 MR 2255485
[75] D. Kreimer and K. Yeats, Recursion and growth estimates in renormalizable quantum field theory. Comm. Math. Phys. 279 (2008), no. 2, 401-427 Zbl 1156.81033 · Zbl 1156.81033
[76] J. B. Kruskal, On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Amer. Math. Soc. 7 (1956), 48-50 Zbl 0070.18404 MR 78686 · Zbl 0070.18404
[77] J.-C. Le Guillou and J. Zinn-Justin (eds.), Large-order behaviour of perturbation theory. Elsevier, Amsterdam, 1990
[78] G. Lepage, A new algorithm for adaptive multidimensional integration. J. Comput. Phys. 27 (1978), 192-203 Zbl 0377.65010 · Zbl 0377.65010
[79] L. Lovász and M. Simonovits, Random walks in a convex body and an improved volume algorithm. Random Structures Algorithms 4 (1993), no. 4, 359-412 Zbl 0788.60087 MR 1238906 · Zbl 0788.60087
[80] D. Maclagan and B. Sturmfels, Introduction to tropical geometry. Grad. Stud. Math. 161, Amer. Math. Soc., Providence, RI, 2015 Zbl 1321.14048 MR 3287221 · Zbl 1321.14048
[81] A. J. McKane, Perturbation expansions at large order: results for scalar field theories revisited. J. Phys. A 52 (2019), no. 5, paper no. 055401 Zbl 1422.81146 · Zbl 1422.81146
[82] B. D. McKay, Spanning trees in regular graphs. European J. Combin. 4 (1983), no. 2, 149-160 Zbl 0517.05043 MR 705968 · Zbl 0517.05043
[83] N. Nakanishi, Graph theory and Feynman integrals. Math. Appl. 11, Gordon and Breach, New York, 1971 Zbl 0212.29203 · Zbl 0212.29203
[84] H. Niederreiter, Random number generation and quasi-Monte Carlo methods. CBMS Reg. Conf. Ser. Math. 63, SIAM, Philadelphia, PA, 1992 Zbl 0761.65002 MR 1172997 · Zbl 0761.65002
[85] L. Nilsson and M. Passare, Mellin transforms of multivariate rational functions. J. Geom. Anal. 23 (2013), no. 1, 24-46 Zbl 1271.44001 MR 3010271 · Zbl 1271.44001
[86] M. Nisse and F. Sottile, The phase limit set of a variety. Algebra Number Theory 7 (2013), no. 2, 339-352 Zbl 1277.14048 MR 3123641 · Zbl 1277.14048
[87] E. Panzer, Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals. Comput. Phys. Commun. 188 (2015), 148-166 Zbl 1344.81024 · Zbl 1344.81024
[88] E. Panzer, Personal communication, 15 September 2020
[89] E. Panzer, Hepp’s bound for Feynman graphs and matroids. Ann. Inst. Henri Poincaré D (2022) DOI 10.4171/AIHPD/126 · Zbl 1520.81076 · doi:10.4171/AIHPD/126
[90] E. Panzer and O. Schnetz, The Galois coaction on 4 periods. Commun. Number Theory Phys. 11 (2017), no. 3, 657-705 Zbl 1439.81046 MR 3713353 · Zbl 1439.81046
[91] A. Postnikov, Permutohedra, associahedra, and beyond. Int. Math. Res. Not. IMRN 2009 (2009), no. 6, 1026-1106 Zbl 1162.52007 MR 2487491
[92] E. Remiddi, Differential equations for Feynman graph amplitudes. Nuovo Cim. A 110 (1997), no. 12, 1435-1452
[93] R. Runkel, Z. Szőr, J. P. Vesga, and S. Weinzierl, Causality and loop-tree duality at higher loops. Phys. Rev. Lett. 122 (2019), no. 11, paper no. 111603
[94] O. Schnetz, Quantum periods: a census of 4 -transcendentals. Commun. Number Theory Phys. 4 (2010), no. 1, 1-47 Zbl 1202.81160 MR 2679376 · Zbl 1202.81160
[95] O. Schnetz, Numbers and functions in quantum field theory. Phys. Rev. D 97 (2018), no. 8, paper no. 085018 MR 3846506
[96] K. Schultka, Toric geometry and regularization of Feynman integrals. 2018, arXiv:1806.01086
[97] A. V. Smirnov, FIESTA 3: cluster-parallelizable multiloop numerical calculations in physical regions. Comput. Phys. Commun. 185 (2014), no. 7, 2090-2100 Zbl 1351.81078 · Zbl 1351.81078
[98] A. V. Smirnov and V. A. Smirnov, Hepp and Speer sectors within modern strategies of sector decomposition. J. High Energy Phys. 2009 (2009), paper no. 004
[99] V. A. Smirnov, Analytic tools for Feynman integrals. Springer Tracts Modern Phys. 250, Springer, Heidelberg, 2012 Zbl 1268.81004 MR 3014599 · Zbl 1268.81004
[100] E. R. Speer, Ultraviolet and infrared singularity structure of generic Feynman amplitudes. Ann. Inst. H. Poincaré Sect. A 23 (1975), no. 1, 1-21 MR 386502
[101] D. A. Spielman and S.-H. Teng, Nearly linear time algorithms for preconditioning and solving symmetric, diagonally dominant linear systems. SIAM J. Matrix Anal. Appl. 35 (2014), no. 3, 835-885 Zbl 1311.65031 MR 3228466 · Zbl 1311.65031
[102] A. von Manteuffel, E. Panzer, and R. M. Schabinger, A quasi-finite basis for multi-loop Feynman integrals. J. High Energy Phys. 2015 (2015), no. 2, paper no. 120 Zbl 1388.81378 MR 3321333 · Zbl 1388.81378
[103] E. T. Whittaker and G. N. Watson, A course of modern analysis. Cambridge Math. Lib., Cambridge University Press, Cambridge, 1963 Zbl 0108.26903 · Zbl 0108.26903
[104] Michael Borinsky Nikhef, Science Park 105, 1098 XG Amsterdam, The Netherlands;
[105] michael.borinsky@nikhef.nl; current address: Institute for Theoretical Studies, ETH Zurich, 8092 Zurich, Switzerland; michael.borinsky@eth-its.ethz.ch
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.