×

Matrix quantization of gravitational edge modes. (English) Zbl 07701978

Summary: Gravitational subsystems with boundaries carry the action of an infinite-dimensional symmetry algebra, with potentially profound implications for the quantum theory of gravity. We initiate an investigation into the quantization of this corner symmetry algebra for the phase space of gravity localized to a region bounded by a 2-dimensional sphere. Starting with the observation that the algebra \(\mathfrak{sdiff}(S^2)\) of area-preserving diffeomorphisms of the 2-sphere admits a deformation to the finite-dimensional algebra \(\mathfrak{su} (N)\), we derive novel finite-\(N\) deformations for two important subalgebras of the gravitational corner symmetry algebra. Specifically, we find that the area-preserving hydrodynamical algebra \(\mathfrak{sdiff}({S}^2)\oplus_{\mathcal{L}}\mathbb{R}^{S^2}\) arises as the large-\(N\) limit of \(\mathfrak{sl}(N, \mathbb{C})\oplus\mathbb{R}\) and that the full area-preserving corner symmetry algebra \(\mathfrak{sdiff}(S^2)\oplus_{\mathcal{L}}\mathfrak{sl}(2, \mathbb{R})^{S^2}\) is the large-\(N\) limit of the pseudo-unitary group \(\mathfrak{su}(N, N)\). We find matching conditions for the Casimir elements of the deformed and continuum algebras and show how these determine the value of the deformation parameter \(N\) as well as the representation of the deformed algebra associated with a quantization of the local gravitational phase space. Additionally, we present a number of novel results related to the various algebras appearing, including a detailed analysis of the asymptotic expansion of the \(\mathfrak{su}(N)\) structure constants, as well as an explicit computation of the full \(\mathfrak{diff}(S^2)\) structure constants in the spherical harmonic basis. A consequence of our work is the definition of an area operator which is compatible with the deformation of the area-preserving corner symmetry at finite \(N\).

MSC:

83C45 Quantization of the gravitational field
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
83C47 Methods of quantum field theory in general relativity and gravitational theory
81T32 Matrix models and tensor models for quantum field theory
81V17 Gravitational interaction in quantum theory
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations

Software:

DLMF

References:

[1] Donnelly, W.; Freidel, L., Local subsystems in gauge theory and gravity, JHEP, 09, 102 (2016) · Zbl 1390.83016 · doi:10.1007/JHEP09(2016)102
[2] Speranza, AJ, Local phase space and edge modes for diffeomorphism-invariant theories, JHEP, 02, 021 (2018) · Zbl 1387.83011 · doi:10.1007/JHEP02(2018)021
[3] L. Ciambelli and R.G. Leigh, Isolated surfaces and symmetries of gravity, Phys. Rev. D104 (2021) 046005 [arXiv:2104.07643] [INSPIRE].
[4] L. Ciambelli, R.G. Leigh and P.-C. Pai, Embeddings and Integrable Charges for Extended Corner Symmetry, Phys. Rev. Lett.128 (2022) 171302 [arXiv:2111.13181] [INSPIRE].
[5] L. Freidel, A canonical bracket for open gravitational system, arXiv:2111.14747 [INSPIRE].
[6] Speranza, AJ, Ambiguity resolution for integrable gravitational charges, JHEP, 07, 029 (2022) · Zbl 1522.83012 · doi:10.1007/JHEP07(2022)029
[7] Freidel, L.; Geiller, M.; Pranzetti, D., Edge modes of gravity. Part I. Corner potentials and charges, JHEP, 11, 026 (2020) · Zbl 1460.83030 · doi:10.1007/JHEP11(2020)026
[8] Freidel, L.; Geiller, M.; Pranzetti, D., Edge modes of gravity. Part II. Corner metric and Lorentz charges, JHEP, 11, 027 (2020) · Zbl 1456.83024 · doi:10.1007/JHEP11(2020)027
[9] Chandrasekaran, V.; Speranza, AJ, Anomalies in gravitational charge algebras of null boundaries and black hole entropy, JHEP, 01, 137 (2021) · Zbl 1459.83025 · doi:10.1007/JHEP01(2021)137
[10] Freidel, L.; Oliveri, R.; Pranzetti, D.; Speziale, S., Extended corner symmetry, charge bracket and Einstein’s equations, JHEP, 09, 083 (2021) · Zbl 1472.83012 · doi:10.1007/JHEP09(2021)083
[11] Chandrasekaran, V.; Flanagan, EE; Shehzad, I.; Speranza, AJ, A general framework for gravitational charges and holographic renormalization, Int. J. Mod. Phys. A, 37, 2250105 (2022) · doi:10.1142/S0217751X22501056
[12] L. Ciambelli and R.G. Leigh, Universal corner symmetry and the orbit method for gravity, Nucl. Phys. B986 (2023) 116053 [arXiv:2207.06441] [INSPIRE]. · Zbl 1518.83022
[13] E. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren, Vieweg+Teubner Verlag (1931) [doi:10.1007/978-3-663-02555-9]. · JFM 57.1578.03
[14] Freidel, L.; Geiller, M.; Pranzetti, D., Edge modes of gravity. Part III. Corner simplicity constraints, JHEP, 01, 100 (2021) · Zbl 1459.83016 · doi:10.1007/JHEP01(2021)100
[15] T. Thiemann, Modern canonical quantum general relativity, Cambridge University Press (2008). · Zbl 1129.83004
[16] Mackey, GW, Induced Representations of Locally Compact Groups I, Annals Math., 55, 101 (1952) · Zbl 0046.11601 · doi:10.2307/1969423
[17] G.W. Mackey, Induced Representations of Locally Compact Groups II. The Frobenius Reciprocity Theorem, Annals Math.58 (1953) 193. · Zbl 0051.01901
[18] G.W. Mackey, Unitary Group Representations in Physics, Probability and Number Theory, Benjamin-Cummings Publ. Comp (1978) [INSPIRE]. · Zbl 0401.22001
[19] Kirillov, AA, Unitary Representations of Nilpotent Lie Groups, Russ. Math. Surv., 17, 53 (1962) · Zbl 0106.25001 · doi:10.1070/RM1962v017n04ABEH004118
[20] Kirillov, AA, Elements of the Theory of Representations (1976), Berlin Heidelberg: Springer, Berlin Heidelberg · Zbl 0342.22001 · doi:10.1007/978-3-642-66243-0
[21] Kirillov, A., Merits and demerits of the orbit method, Bull. Am. Math. Soc., 36, 433 (1999) · Zbl 0940.22013 · doi:10.1090/S0273-0979-99-00849-6
[22] Rawnsley, JH, Representations of a semi-direct product by quantization, Math. Proc. Cambridge Phil. Soc., 78, 345 (1975) · Zbl 0313.22014 · doi:10.1017/S0305004100051793
[23] P. Baguis, Semidirect products and the Pukanszky condition, J. Geom. Phys.25 (1998) 245 [dg-ga/9705005]. · Zbl 0932.22011
[24] G. Barnich and B. Oblak, Notes on the BMS group in three dimensions: I. Induced representations, JHEP06 (2014) 129 [arXiv:1403.5803] [INSPIRE].
[25] G. Barnich and B. Oblak, Notes on the BMS group in three dimensions: II. Coadjoint representation, JHEP03 (2015) 033 [arXiv:1502.00010] [INSPIRE]. · Zbl 1388.83006
[26] Donnelly, W.; Freidel, L.; Moosavian, SF; Speranza, AJ, Gravitational edge modes, coadjoint orbits, and hydrodynamics, JHEP, 09, 008 (2021) · Zbl 1472.83011 · doi:10.1007/JHEP09(2021)008
[27] B. Kostant, Orbits, Symplectic Structures and Representation Theory, in Proceedings of the United States-Japan Seminar in Differential Geometry, Kyoto, Japan, p. 71, 1965. Springer New York, U.S.A. (2009), p. 482-482 [doi:10.1007/b94535_20]. · Zbl 0138.00206
[28] B. Kostant, Quantization and unitary representations, in Lecture Notes in Mathematics, Springer Berlin Heidelberg (1970), p. 87-208 [doi:10.1007/bfb0079068]. · Zbl 0223.53028
[29] J.-M. Souriau, Structure des Systémes Dynamiques: Maîtrises de Mathématiques, Dunod (1970), http://www.jmsouriau.com/structure_des_systemes_dynamiques.htm. · Zbl 0186.58001
[30] J.-M. Souriau, Structure of Dynamical Systems: A Symplectic View of Physics, Birkhäuser Boston (1997) doi:10.1007/978-1-4612-0281-3. · Zbl 0884.70001
[31] Gukov, S.; Witten, E., Branes and Quantization, Adv. Theor. Math. Phys., 13, 1445 (2009) · Zbl 1247.81378 · doi:10.4310/ATMP.2009.v13.n5.a5
[32] D. Gaiotto and E. Witten, Probing Quantization Via Branes, arXiv:2107.12251 [INSPIRE].
[33] Buividovich, PV; Polikarpov, MI, Entanglement entropy in gauge theories and the holographic principle for electric strings, Phys. Lett. B, 670, 141 (2008) · doi:10.1016/j.physletb.2008.10.032
[34] W. Donnelly, Decomposition of entanglement entropy in lattice gauge theory, Phys. Rev. D85 (2012) 085004 [arXiv:1109.0036] [INSPIRE].
[35] H. Casini, M. Huerta and J.A. Rosabal, Remarks on entanglement entropy for gauge fields, Phys. Rev. D89 (2014) 085012 [arXiv:1312.1183] [INSPIRE].
[36] W. Donnelly, Entanglement entropy and nonabelian gauge symmetry, Class. Quant. Grav.31 (2014) 214003 [arXiv:1406.7304] [INSPIRE]. · Zbl 1304.81121
[37] Soni, RM; Trivedi, SP, Aspects of Entanglement Entropy for Gauge Theories, JHEP, 01, 136 (2016) · Zbl 1388.81088 · doi:10.1007/JHEP01(2016)136
[38] J. Lin and Ð. Radičević, Comments on defining entanglement entropy, Nucl. Phys. B958 (2020) 115118 [arXiv:1808.05939] [INSPIRE]. · Zbl 1473.81045
[39] V. Benedetti and H. Casini, Entanglement entropy of linearized gravitons in a sphere, Phys. Rev. D101 (2020) 045004 [arXiv:1908.01800] [INSPIRE].
[40] Anninos, D.; Denef, F.; Law, YTA; Sun, Z., Quantum de Sitter horizon entropy from quasicanonical bulk, edge, sphere and topological string partition functions, JHEP, 01, 088 (2022) · Zbl 1521.81335 · doi:10.1007/JHEP01(2022)088
[41] David, JR; Mukherjee, J., Entanglement entropy of gravitational edge modes, JHEP, 08, 065 (2022) · Zbl 1522.83062 · doi:10.1007/JHEP08(2022)065
[42] T. Jacobson and R. Parentani, Horizon entropy, Found. Phys.33 (2003) 323 [gr-qc/0302099] [INSPIRE].
[43] E. Bianchi and R.C. Myers, On the Architecture of Spacetime Geometry, Class. Quant. Grav.31 (2014) 214002 [arXiv:1212.5183] [INSPIRE]. · Zbl 1303.83010
[44] T.S. Kuhn, Black-body theory and the quantum discontinuity, 1894-1912, Clarendon Press, Oxford University Press Oxford: New York, U.S.A. (1978).
[45] J.R. Hoppe, Quantum Theory of a Massless Relativistic Surface and a Two-Dimensional Bound State Problem, Ph.D. Thesis, Massachusetts Institute of Technology, U.S.A. (1982).
[46] J. Hoppe, Diffeomorphism Groups, Quantization and SU(infinity), Int. J. Mod. Phys. A4 (1989) 5235 [INSPIRE]. · Zbl 0707.17018
[47] C.N. Pope and K.S. Stelle, SU(infinity), Su+(infinity) and Area Preserving Algebras, Phys. Lett. B226 (1989) 257 [INSPIRE].
[48] Banks, T.; Fischler, W., The holographic spacetime model of cosmology, Int. J. Mod. Phys. D, 27, 1846005 (2018) · doi:10.1142/S0218271818460057
[49] B. de Wit and H. Nicolai, Supermembranes: a fond farewell?, in the proceedings of the Trieste Conference on Supermembranes and Physics in 2+1 Dimensions, (1989), p. 0777-790 [INSPIRE].
[50] Bordemann, M.; Hoppe, J.; Schaller, P.; Schlichenmaier, M., Gl (Infinity) and Geometric Quantization, Commun. Math. Phys., 138, 209 (1991) · Zbl 0735.58020 · doi:10.1007/BF02099490
[51] G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys. B72 (1974) 461 [INSPIRE].
[52] J.S. Dowker, Volume Preserving Diffeomorphisms on the Three Sphere, Class. Quant. Grav.7 (1990) 1241 [INSPIRE]. · Zbl 0712.58014
[53] J.S. Dowker, Central extensions of sphere groups, J. Math. Phys.32 (1991) 1433 [INSPIRE]. · Zbl 0749.22008
[54] Freidel, L.; Krasnov, K., The fuzzy sphere star product and spin networks, J. Math. Phys., 43, 1737 (2002) · Zbl 1059.83027 · doi:10.1063/1.1456255
[55] Nomura, M., Description of the 6-j and the 9-j Symbols in Terms of Small Numbers of 3-j Symbols, J. Phys. Soc. Jap., 58, 2677 (1989) · doi:10.1143/JPSJ.58.2677
[56] M. Campiglia and A. Laddha, Asymptotic symmetries and subleading soft graviton theorem, Phys. Rev. D90 (2014) 124028 [arXiv:1408.2228] [INSPIRE].
[57] Campiglia, M.; Laddha, A., New symmetries for the Gravitational S-matrix, JHEP, 04, 076 (2015) · Zbl 1388.83094 · doi:10.1007/JHEP04(2015)076
[58] G. Compère, A. Fiorucci and R. Ruzziconi, Superboost transitions, refraction memory and super-Lorentz charge algebra, JHEP11 (2018) 200 [Erratum ibid.04 (2020) 172] [arXiv:1810.00377] [INSPIRE]. · Zbl 1405.83004
[59] Barnich, G.; Ruzziconi, R., Coadjoint representation of the BMS group on celestial Riemann surfaces, JHEP, 06, 079 (2021) · Zbl 1466.81028 · doi:10.1007/JHEP06(2021)079
[60] Freidel, L.; Oliveri, R.; Pranzetti, D.; Speziale, S., The Weyl BMS group and Einstein’s equations, JHEP, 07, 170 (2021) · Zbl 1468.83017 · doi:10.1007/JHEP07(2021)170
[61] Freidel, L.; Pranzetti, D., Gravity from symmetry: duality and impulsive waves, JHEP, 04, 125 (2022) · Zbl 1522.83007 · doi:10.1007/JHEP04(2022)125
[62] Prema, AB, Celestial holography: Lectures on asymptotic symmetries, SciPost Phys. Lect. Notes, 47, 1 (2022)
[63] A.-M. Raclariu, Lectures on Celestial Holography, arXiv:2107.02075 [INSPIRE].
[64] Pasterski, S., Lectures on celestial amplitudes, Eur. Phys. J. C, 81, 1062 (2021) · doi:10.1140/epjc/s10052-021-09846-7
[65] Moser, J., On the volume elements on a manifold, Trans. Am. Math. Soc., 120, 286 (1965) · Zbl 0141.19407 · doi:10.1090/S0002-9947-1965-0182927-5
[66] Marsden, JE; Raţiu, T.; Weinstein, A., Semidirect products and reduction in mechanics, Trans. Am. Math. Soc., 281, 147 (1984) · Zbl 0529.58011 · doi:10.1090/S0002-9947-1984-0719663-1
[67] R. Andrade e Silva and T. Jacobson, Particle on the sphere: group-theoretic quantization in the presence of a magnetic monopole, J. Phys. A54 (2021) 235303 [arXiv:2011.04888] [INSPIRE]. · Zbl 1519.81347
[68] A.A. Kirillov, Lectures on the Orbit Method, American Mathematical Society, U.S.A. (2004), https://bookstore.ams.org/gsm-64/. · Zbl 1229.22003
[69] Flato, M.; Gerstenhaber, M.; Voronov, AA, Cohomology and deformation of Leibniz pairs, Lett. Math. Phys., 34, 77 (1995) · Zbl 0844.17015 · doi:10.1007/BF00739377
[70] D. Fuks, Cohomology of Infinite-Dimensional Lie Algebras, Monographs in Contemporary Mathematics (1986). · Zbl 0667.17005
[71] M. Gerstenhaber and S.D. Schack, Algebraic Cohomology and Deformation Theory, in Deformation Theory of Algebras and Structures and Applications, Springer Netherlands (1988), p. 11-264 [doi:10.1007/978-94-009-3057-5_2]. · Zbl 0676.16022
[72] J. Madore, The fuzzy sphere, Class. Quant. Grav.9 (1992) 69 [INSPIRE]. · Zbl 0742.53039
[73] V.P. Nair, Landau-Hall States and Berezin-Toeplitz Quantization of Matrix Algebras, Phys. Rev. D102 (2020) 025015 [arXiv:2001.05040] [INSPIRE].
[74] Inonu, E.; Wigner, EP, On the Contraction of groups and their represenations, Proc. Nat. Acad. Sci., 39, 510 (1953) · Zbl 0050.02601 · doi:10.1073/pnas.39.6.510
[75] V.I. Arnold and B.A. Khesin, Topological methods in hydrodynamics, Springer Science & Business Media (1999).
[76] Izosimov, A.; Khesin, B.; Mousavi, M., Coadjoint orbits of symplectic diffeomorphisms of surfaces and ideal hydrodynamics, Annales Inst. Fourier, 66, 2385 (2016) · Zbl 1372.37106 · doi:10.5802/aif.3066
[77] Cordes, S.; Moore, GW; Ramgoolam, S., Lectures on 2-d Yang-Mills theory, equivariant cohomology and topological field theories, Nucl. Phys. B Proc. Suppl., 41, 184 (1995) · Zbl 0991.81585 · doi:10.1016/0920-5632(95)00434-B
[78] B. Carter, Outer curvature and conformal geometry of an imbedding, J. Geom. Phys.8 (1992) 53 [INSPIRE]. · Zbl 0747.53016
[79] Aharony, O.; Bergman, O.; Jafferis, DL; Maldacena, J., N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP, 10, 091 (2008) · Zbl 1245.81130 · doi:10.1088/1126-6708/2008/10/091
[80] D. Berenstein and R.G. Leigh, String junctions and bound states of intersecting branes, Phys. Rev. D60 (1999) 026005 [hep-th/9812142] [INSPIRE].
[81] Vogan, DA, The unitary dual of GL(n) over an archimedean field, Invent. Math., 83, 449 (1986) · Zbl 0598.22008 · doi:10.1007/BF01394418
[82] S. Leutheusser and H. Liu, Causal connectability between quantum systems and the black hole interior in holographic duality, arXiv:2110.05497 [INSPIRE].
[83] S. Leutheusser and H. Liu, Emergent times in holographic duality, arXiv:2112.12156 [INSPIRE].
[84] Witten, E., Gravity and the crossed product, JHEP, 10, 008 (2022) · Zbl 1534.83065 · doi:10.1007/JHEP10(2022)008
[85] V. Chandrasekaran, G. Penington and E. Witten, Large N algebras and generalized entropy, arXiv:2209.10454 [doi:10.1007/JHEP04(2023)009] [INSPIRE]. · Zbl 07693897
[86] V.F. Molchanov, Maximal Degenerate Series Representations of the Universal Covering of the Group SU(n,n), in Lie Groups and Lie Algebras, Springer Netherlands (1998), p. 313-336 [doi:10.1007/978-94-011-5258-7_20]. · Zbl 0899.22013
[87] A.W. Knapp, Representation theory of semisimple groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, U.S.A. (2001). · Zbl 0993.22001
[88] Aharony, O., Large N field theories, string theory and gravity, Phys. Rept., 323, 183 (2000) · Zbl 1368.81009 · doi:10.1016/S0370-1573(99)00083-6
[89] Maldacena, JM, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys., 2, 231 (1998) · Zbl 0914.53047 · doi:10.4310/ATMP.1998.v2.n2.a1
[90] C. Itzykson and J.B. Zuber, The Planar Approximation. 2, J. Math. Phys.21 (1980) 411 [INSPIRE]. · Zbl 0997.81549
[91] Matytsin, A., On the large N limit of the Itzykson-Zuber integral, Nucl. Phys. B, 411, 805 (1994) · Zbl 1049.81631 · doi:10.1016/0550-3213(94)90471-5
[92] Bateman, H., Some Recent Researches on the Motion of Fluids, Monthly Weather Review, 43, 163 (1915) · doi:10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO;2
[93] J.M. Burgers, A Mathematical Model Illustrating the Theory of Turbulence, in Advances in Applied Mechanics, Elsevier (1948), p. 171-199 [doi:10.1016/s0065-2156(08)70100-5].
[94] Kenyon, R.; Okounkov, A., Limit shapes and the complex Burgers equation, Acta Math., 199, 263 (2007) · Zbl 1156.14029 · doi:10.1007/s11511-007-0021-0
[95] R.F. Penna, SDiff(S^2) and the orbit method, J. Math. Phys.61 (2020) 012301 [arXiv:1806.05235] [INSPIRE]. · Zbl 1434.58003
[96] Rossmann, W., Kirillov’s character formula for reductive Lie groups, Invent. Math., 48, 207 (1978) · Zbl 0372.22011 · doi:10.1007/BF01390244
[97] I. Bars, Strings and matrix models on genus g Riemann surfaces, hep-th/9706177 [INSPIRE].
[98] Floratos, EG; Iliopoulos, J., A Note on the Classical Symmetries of the Closed Bosonic Membranes, Phys. Lett. B, 201, 237 (1988) · doi:10.1016/0370-2693(88)90220-1
[99] Fairlie, DB; Fletcher, P.; Zachos, CK, Trigonometric Structure Constants for New Infinite Algebras, Phys. Lett. B, 218, 203 (1989) · Zbl 0689.17018 · doi:10.1016/0370-2693(89)91418-4
[100] J.W. Barrett and J. Gaunt, Finite spectral triples for the fuzzy torus, arXiv:1908.06796 [INSPIRE].
[101] Enriquez-Rojo, M.; Procházka, T.; Sachs, I., On deformations and extensions of Diff(S^2), JHEP, 10, 133 (2021) · Zbl 1476.83011 · doi:10.1007/JHEP10(2021)133
[102] A. Pressley and Graeme Segal, Generalized Kac-Moody Algebras and the Diffeomorphism Group of a Closed Surface, Oxford University Press (1990), p. 250-264 [doi:10.1016/0550-3213(90)90663-X].
[103] Frappat, L., Generalized Kac-Moody Algebras and the Diffeomorphism Group of a Closed Surface, Nucl. Phys. B, 334, 250 (1990) · doi:10.1016/0550-3213(90)90663-X
[104] Banks, T.; Fischler, W.; Shenker, SH; Susskind, L., M theory as a matrix model: A conjecture, Phys. Rev. D, 55, 5112 (1997) · doi:10.1103/PhysRevD.55.5112
[105] Kapustin, A.; Willett, B.; Yaakov, I., Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP, 03, 089 (2010) · Zbl 1271.81110 · doi:10.1007/JHEP03(2010)089
[106] P. Saad, S.H. Shenker and D. Stanford, JT gravity as a matrix integral, arXiv:1903.11115 [INSPIRE].
[107] V. Balasubramanian and O. Parrikar, Remarks on entanglement entropy in string theory, Phys. Rev. D97 (2018) 066025 [arXiv:1801.03517] [INSPIRE].
[108] Donnelly, W.; Wong, G., Entanglement branes in a two-dimensional string theory, JHEP, 09, 097 (2017) · Zbl 1382.81156 · doi:10.1007/JHEP09(2017)097
[109] Donnelly, W.; Wong, G., Entanglement branes, modular flow, and extended topological quantum field theory, JHEP, 10, 016 (2019) · Zbl 1427.81154 · doi:10.1007/JHEP10(2019)016
[110] Hubeny, VE; Pius, R.; Rangamani, M., Topological string entanglement, JHEP, 10, 239 (2019) · Zbl 1427.83105 · doi:10.1007/JHEP10(2019)239
[111] W. Donnelly, Y. Jiang, M. Kim and G. Wong, Entanglement entropy and edge modes in topological string theory. Part I. Generalized entropy for closed strings, JHEP10 (2021) 201 [arXiv:2010.15737] [INSPIRE].
[112] Y. Jiang, M. Kim and G. Wong, Entanglement entropy and edge modes in topological string theory. Part II. The dual gauge theory story, JHEP10 (2021) 202 [arXiv:2012.13397] [INSPIRE].
[113] Chandrasekaran, V.; Longo, R.; Penington, G.; Witten, E., An algebra of observables for de Sitter space, JHEP, 02, 082 (2023) · Zbl 1541.81075 · doi:10.1007/JHEP02(2023)082
[114] L.C. Maximon, Chapter 34: 3j, 6j, 9j symbols, NIST Digital Library of Mathematical Functions https://dlmf.nist.gov/34.
[115] Goldberg, JN, Spin s spherical harmonics and edth, J. Math. Phys., 8, 2155 (1967) · Zbl 0155.57402 · doi:10.1063/1.1705135
[116] Thorne, KS, Multipole Expansions of Gravitational Radiation, Rev. Mod. Phys., 52, 299 (1980) · doi:10.1103/RevModPhys.52.299
[117] Alekseev, AY; Recknagel, A.; Schomerus, V., Noncommutative world volume geometries: Branes on SU(2) and fuzzy spheres, JHEP, 09, 023 (1999) · Zbl 0957.81084 · doi:10.1088/1126-6708/1999/09/023
[118] S. Gutt, Deformation Quantisation of Poisson Manifolds, in Lectures on Poisson geometry, vol. 17 of Geom. Topol. Monogr., pp. 171-220, Geom. Topol. Publ., Coventry (2011), 10.2140/gt. · Zbl 1229.53003
[119] F. Bayen et al., Deformation Theory and Quantization. 1. Deformations of Symplectic Structures, Annals Phys.111 (1978) 61 [INSPIRE]. · Zbl 0377.53024
[120] D. Sternheimer, Deformation quantization: Twenty years after, AIP Conf. Proc.453 (1998) 107 [math/9809056] [INSPIRE]. · Zbl 0977.53082
[121] G. Ponzano and T. Regge, Semiclassical limit of Racah coefficients, in Spectroscopic and Group Theoretical Methods in Physics: Racah memorial volume, F. Bloch et al. eds., North Holland Publishing Co. (1968), p. 1-58.
[122] Raynal, J., On the definition and properties of generalized 6-j symbols, J. Math. Phys., 20, 2398 (1979) · Zbl 0449.33019 · doi:10.1063/1.524047
[123] Raynal, J.; der Jeugt, JV; Rao, KS; Rajeswari, V., On the zeros of 3j coefficients: polynomial degree versus recurrence order, J. Phys. A, 26, 2607 (1993) · Zbl 0824.33008 · doi:10.1088/0305-4470/26/11/011
[124] Fedosov, B., A simple geometrical construction of deformation quantization, J. Diff. Geom., 40, 213 (1994) · Zbl 0812.53034
[125] B. Fedosov, Deformation quantization and index theory, vol. 9 of Mathematical Topics, Akademie Verlag, Berlin, Germany (1996). · Zbl 0867.58061
[126] K. Schulten and R.G. Gordon, Exact Recursive Evaluation of 3J and 6J Coefficients for Quantum Mechanical Coupling of Angular Momenta, J. Math. Phys.16 (1975) 1961 [INSPIRE].
[127] V. Bonzom and L. Freidel, The Hamiltonian constraint in 3d Riemannian loop quantum gravity, Class. Quant. Grav.28 (2011) 195006 [arXiv:1101.3524] [INSPIRE]. · Zbl 1226.83022
[128] Presnajder, P., The origin of chiral anomaly and the noncommutative geometry, J. Math. Phys., 41, 2789 (2000) · Zbl 0979.81083 · doi:10.1063/1.533271
[129] Hayasaka, K.; Nakayama, R.; Takaya, Y., A new noncommutative product on the fuzzy two sphere corresponding to the unitary representation of SU(2) and the Seiberg-Witten map, Phys. Lett. B, 553, 109 (2003) · Zbl 1006.81086 · doi:10.1016/S0370-2693(02)03193-3
[130] A. Alekseev and A. Lachowska, Invariant ⋆-Products on Coadjoint Orbits and the Shapovalov Pairing, Comment. Math. Helv. (2005) 795. · Zbl 1162.53327
[131] Matsubara, K.; Stenmark, M., Invariant star products on S**2 and the canonical trace, Lett. Math. Phys., 70, 109 (2004) · Zbl 1070.53058 · doi:10.1007/s11005-004-4290-7
[132] M.A. Vasiliev, Higher Spin Algebras and Quantization on the Sphere and Hyperboloid, Int. J. Mod. Phys. A6 (1991) 1115 [INSPIRE]. · Zbl 0738.58062
[133] Bordemann, M.; Hoppe, J.; Schaller, P., Infinite-Dimensional Matrix Algebras, Phys. Lett. B, 232, 199 (1989) · doi:10.1016/0370-2693(89)91687-0
[134] Bergshoeff, E.; Blencowe, MP; Stelle, KS, Area Preserving Diffeomorphisms and Higher Spin Algebra, Commun. Math. Phys., 128, 213 (1990) · Zbl 0707.17019 · doi:10.1007/BF02108779
[135] J.H. Schwarz, Diffeomorphism Symmetry in Two Dimensions and Celestial Holography, arXiv:2208.13304 [INSPIRE].
[136] Gutt, S., Second et troisième espaces de cohomologie différentiable de l’algèbre de Lie de Poisson d’une variété symplectique, Annales de l’Institut Henri Poincare A, 33, 1 (1980) · Zbl 0476.53021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.